Mister Exam

Other calculators

Derivative of x*(ln^3(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     3   
x*log (x)
$$x \log{\left(x \right)}^{3}$$
x*log(x)^3
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   3           2   
log (x) + 3*log (x)
$$\log{\left(x \right)}^{3} + 3 \log{\left(x \right)}^{2}$$
The second derivative [src]
3*(2 + log(x))*log(x)
---------------------
          x          
$$\frac{3 \left(\log{\left(x \right)} + 2\right) \log{\left(x \right)}}{x}$$
The third derivative [src]
  /                    2                            \
3*\2 - 6*log(x) + 2*log (x) - 3*(-2 + log(x))*log(x)/
-----------------------------------------------------
                           2                         
                          x                          
$$\frac{3 \left(- 3 \left(\log{\left(x \right)} - 2\right) \log{\left(x \right)} + 2 \log{\left(x \right)}^{2} - 6 \log{\left(x \right)} + 2\right)}{x^{2}}$$