Mister Exam

Derivative of x*e^(2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2*x
x*e   
$$x e^{2 x}$$
d /   2*x\
--\x*e   /
dx        
$$\frac{d}{d x} x e^{2 x}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 2*x        2*x
e    + 2*x*e   
$$2 x e^{2 x} + e^{2 x}$$
The second derivative [src]
           2*x
4*(1 + x)*e   
$$4 \left(x + 1\right) e^{2 x}$$
The third derivative [src]
             2*x
4*(3 + 2*x)*e   
$$4 \cdot \left(2 x + 3\right) e^{2 x}$$
The graph
Derivative of x*e^(2x)