Mister Exam

Other calculators

Derivative of x-2+sin(1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
           /1\
x - 2 + sin|-|
           \x/
$$\left(x - 2\right) + \sin{\left(\frac{1}{x} \right)}$$
x - 2 + sin(1/x)
Detail solution
  1. Differentiate term by term:

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of the constant is zero.

      The result is:

    2. Let .

    3. The derivative of sine is cosine:

    4. Then, apply the chain rule. Multiply by :

      1. Apply the power rule: goes to

      The result of the chain rule is:

    The result is:


The answer is:

The graph
The first derivative [src]
       /1\
    cos|-|
       \x/
1 - ------
       2  
      x   
$$1 - \frac{\cos{\left(\frac{1}{x} \right)}}{x^{2}}$$
The second derivative [src]
              /1\
           sin|-|
     /1\      \x/
2*cos|-| - ------
     \x/     x   
-----------------
         3       
        x        
$$\frac{2 \cos{\left(\frac{1}{x} \right)} - \frac{\sin{\left(\frac{1}{x} \right)}}{x}}{x^{3}}$$
The third derivative [src]
                /1\        /1\
             cos|-|   6*sin|-|
       /1\      \x/        \x/
- 6*cos|-| + ------ + --------
       \x/      2        x    
               x              
------------------------------
               4              
              x               
$$\frac{- 6 \cos{\left(\frac{1}{x} \right)} + \frac{6 \sin{\left(\frac{1}{x} \right)}}{x} + \frac{\cos{\left(\frac{1}{x} \right)}}{x^{2}}}{x^{4}}$$