Mister Exam

Other calculators

Derivative of ((x-2)/(x+1))^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       2
/x - 2\ 
|-----| 
\x + 1/ 
$$\left(\frac{x - 2}{x + 1}\right)^{2}$$
((x - 2)/(x + 1))^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       2                            
(x - 2)          /  2     2*(x - 2)\
--------*(x + 1)*|----- - ---------|
       2         |x + 1           2|
(x + 1)          \         (x + 1) /
------------------------------------
               x - 2                
$$\frac{\frac{\left(x - 2\right)^{2}}{\left(x + 1\right)^{2}} \left(x + 1\right) \left(- \frac{2 \left(x - 2\right)}{\left(x + 1\right)^{2}} + \frac{2}{x + 1}\right)}{x - 2}$$
The second derivative [src]
  /     -2 + x\ /     3*(-2 + x)\
2*|-1 + ------|*|-1 + ----------|
  \     1 + x / \       1 + x   /
---------------------------------
                    2            
             (1 + x)             
$$\frac{2 \left(\frac{x - 2}{x + 1} - 1\right) \left(\frac{3 \left(x - 2\right)}{x + 1} - 1\right)}{\left(x + 1\right)^{2}}$$
The third derivative [src]
                /                                                                 2             \
                |                                          4*(-2 + x)   3*(-2 + x)              |
                |               -2 + x        -2 + x   1 - ---------- + -----------             |
                |          -1 + ------   -1 + ------         1 + x               2              |
  /     -2 + x\ |    1          1 + x         1 + x                       (1 + x)     2*(-2 + x)|
4*|-1 + ------|*|- ----- - ----------- - ----------- - ---------------------------- - ----------|
  \     1 + x / |  1 + x      1 + x         -2 + x                -2 + x                      2 |
                \                                                                      (1 + x)  /
-------------------------------------------------------------------------------------------------
                                                    2                                            
                                             (1 + x)                                             
$$\frac{4 \left(\frac{x - 2}{x + 1} - 1\right) \left(- \frac{2 \left(x - 2\right)}{\left(x + 1\right)^{2}} - \frac{\frac{x - 2}{x + 1} - 1}{x + 1} - \frac{1}{x + 1} - \frac{\frac{x - 2}{x + 1} - 1}{x - 2} - \frac{\frac{3 \left(x - 2\right)^{2}}{\left(x + 1\right)^{2}} - \frac{4 \left(x - 2\right)}{x + 1} + 1}{x - 2}\right)}{\left(x + 1\right)^{2}}$$