2 /x - 2\ |-----| \x + 1/
((x - 2)/(x + 1))^2
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
2
(x - 2) / 2 2*(x - 2)\
--------*(x + 1)*|----- - ---------|
2 |x + 1 2|
(x + 1) \ (x + 1) /
------------------------------------
x - 2
/ -2 + x\ / 3*(-2 + x)\
2*|-1 + ------|*|-1 + ----------|
\ 1 + x / \ 1 + x /
---------------------------------
2
(1 + x)
/ 2 \
| 4*(-2 + x) 3*(-2 + x) |
| -2 + x -2 + x 1 - ---------- + ----------- |
| -1 + ------ -1 + ------ 1 + x 2 |
/ -2 + x\ | 1 1 + x 1 + x (1 + x) 2*(-2 + x)|
4*|-1 + ------|*|- ----- - ----------- - ----------- - ---------------------------- - ----------|
\ 1 + x / | 1 + x 1 + x -2 + x -2 + x 2 |
\ (1 + x) /
-------------------------------------------------------------------------------------------------
2
(1 + x)