Mister Exam

Other calculators


(x-2)arctg(1/(x-2))

Derivative of (x-2)arctg(1/(x-2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
            /  1  \
(x - 2)*atan|-----|
            \x - 2/
$$\left(x - 2\right) \operatorname{atan}{\left(\frac{1}{x - 2} \right)}$$
(x - 2)*atan(1/(x - 2))
The graph
The first derivative [src]
            1                  /  1  \
- ---------------------- + atan|-----|
  /       1    \               \x - 2/
  |1 + --------|*(x - 2)              
  |           2|                      
  \    (x - 2) /                      
$$\operatorname{atan}{\left(\frac{1}{x - 2} \right)} - \frac{1}{\left(1 + \frac{1}{\left(x - 2\right)^{2}}\right) \left(x - 2\right)}$$
The second derivative [src]
           -2             
--------------------------
               2          
/        1    \          4
|1 + ---------| *(-2 + x) 
|            2|           
\    (-2 + x) /           
$$- \frac{2}{\left(1 + \frac{1}{\left(x - 2\right)^{2}}\right)^{2} \left(x - 2\right)^{4}}$$
The third derivative [src]
  /              4                            4            \
2*|- -------------------------- + -------------------------|
  |                 2             /        1    \         2|
  |  /        1    \          4   |1 + ---------|*(-2 + x) |
  |  |1 + ---------| *(-2 + x)    |            2|          |
  |  |            2|              \    (-2 + x) /          |
  \  \    (-2 + x) /                                       /
------------------------------------------------------------
                 /        1    \         3                  
                 |1 + ---------|*(-2 + x)                   
                 |            2|                            
                 \    (-2 + x) /                            
$$\frac{2 \left(\frac{4}{\left(1 + \frac{1}{\left(x - 2\right)^{2}}\right) \left(x - 2\right)^{2}} - \frac{4}{\left(1 + \frac{1}{\left(x - 2\right)^{2}}\right)^{2} \left(x - 2\right)^{4}}\right)}{\left(1 + \frac{1}{\left(x - 2\right)^{2}}\right) \left(x - 2\right)^{3}}$$
The graph
Derivative of (x-2)arctg(1/(x-2))