Mister Exam

Other calculators

Derivative of (x-1)^2*sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       2       
(x - 1) *sin(x)
$$\left(x - 1\right)^{2} \sin{\left(x \right)}$$
(x - 1)^2*sin(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    ; to find :

    1. The derivative of sine is cosine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2                           
(x - 1) *cos(x) + (-2 + 2*x)*sin(x)
$$\left(x - 1\right)^{2} \cos{\left(x \right)} + \left(2 x - 2\right) \sin{\left(x \right)}$$
The second derivative [src]
                   2                           
2*sin(x) - (-1 + x) *sin(x) + 4*(-1 + x)*cos(x)
$$- \left(x - 1\right)^{2} \sin{\left(x \right)} + 4 \left(x - 1\right) \cos{\left(x \right)} + 2 \sin{\left(x \right)}$$
7-я производная [src]
                    2                            
42*cos(x) - (-1 + x) *cos(x) - 14*(-1 + x)*sin(x)
$$- \left(x - 1\right)^{2} \cos{\left(x \right)} - 14 \left(x - 1\right) \sin{\left(x \right)} + 42 \cos{\left(x \right)}$$
The third derivative [src]
                   2                           
6*cos(x) - (-1 + x) *cos(x) - 6*(-1 + x)*sin(x)
$$- \left(x - 1\right)^{2} \cos{\left(x \right)} - 6 \left(x - 1\right) \sin{\left(x \right)} + 6 \cos{\left(x \right)}$$