Detail solution
-
Apply the product rule:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
Differentiate term by term:
-
Apply the power rule: goes to
-
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
; to find :
-
The derivative of sine is cosine:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
2
(x - 1) *cos(x) + (-2 + 2*x)*sin(x)
$$\left(x - 1\right)^{2} \cos{\left(x \right)} + \left(2 x - 2\right) \sin{\left(x \right)}$$
The second derivative
[src]
2
2*sin(x) - (-1 + x) *sin(x) + 4*(-1 + x)*cos(x)
$$- \left(x - 1\right)^{2} \sin{\left(x \right)} + 4 \left(x - 1\right) \cos{\left(x \right)} + 2 \sin{\left(x \right)}$$
2
42*cos(x) - (-1 + x) *cos(x) - 14*(-1 + x)*sin(x)
$$- \left(x - 1\right)^{2} \cos{\left(x \right)} - 14 \left(x - 1\right) \sin{\left(x \right)} + 42 \cos{\left(x \right)}$$
The third derivative
[src]
2
6*cos(x) - (-1 + x) *cos(x) - 6*(-1 + x)*sin(x)
$$- \left(x - 1\right)^{2} \cos{\left(x \right)} - 6 \left(x - 1\right) \sin{\left(x \right)} + 6 \cos{\left(x \right)}$$