x - 1
-----------------
_______
(x + 2)*\/ x - 2
(x - 1)/(((x + 2)*sqrt(x - 2)))
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result of the chain rule is:
; to find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ _______ x + 2 \
(x - 1)*|- \/ x - 2 - -----------|
| _______|
1 \ 2*\/ x - 2 /
----------------- + -----------------------------------
_______ 2
(x + 2)*\/ x - 2 (x - 2)*(x + 2)
/ ________ 2 + x / 1 2 \ / ________ 2 + x \ / ________ 2 + x \\
|2*\/ -2 + x + ---------- 2 + x |------ + -----|*|2*\/ -2 + x + ----------| 2*|2*\/ -2 + x + ----------||
| ________ 4 - ------ \-2 + x 2 + x/ | ________| | ________||
________ 2 + x | \/ -2 + x -2 + x \ \/ -2 + x / \ \/ -2 + x /|
2*\/ -2 + x + ---------- (-1 + x)*|------------------------- - ----------- + -------------------------------------------- + -----------------------------|
________ | 2 3/2 -2 + x (-2 + x)*(2 + x) |
\/ -2 + x \ (-2 + x) (-2 + x) /
- ------------------------- + ---------------------------------------------------------------------------------------------------------------------------------
-2 + x 4
---------------------------------------------------------------------------------------------------------------------------------------------------------------
2
(2 + x)
/ / ________ 2 + x \ / ________ 2 + x \ / 3 8 4 \ / 1 2 \ / ________ 2 + x \ / ________ 2 + x \ / ________ 2 + x \ / 1 2 \ / ________ 2 + x \\ / ________ 2 + x \ / 1 2 \ / ________ 2 + x \ / ________ 2 + x \
| / 2 + x \ / 2 + x \ 4*|2*\/ -2 + x + ----------| |2*\/ -2 + x + ----------|*|--------- + -------- + ----------------| |------ + -----|*|2*\/ -2 + x + ----------| / 2 + x \ / 1 2 \ / 2 + x \ 8*|2*\/ -2 + x + ----------| 12*|2*\/ -2 + x + ----------| 2*|------ + -----|*|2*\/ -2 + x + ----------|| / 2 + x \ 6*|2*\/ -2 + x + ----------| 6*|------ + -----|*|2*\/ -2 + x + ----------| 12*|2*\/ -2 + x + ----------|
| 3*|2 - ------| 3*|4 - ------| | ________| | ________| | 2 2 (-2 + x)*(2 + x)| \-2 + x 2 + x/ | ________| |4 - ------|*|------ + -----| 6*|4 - ------| | ________| | ________| \-2 + x 2 + x/ | ________|| 6*|4 - ------| | ________| \-2 + x 2 + x/ | ________| | ________|
| \ -2 + x/ \ -2 + x/ \ \/ -2 + x / \ \/ -2 + x / \(-2 + x) (2 + x) / \ \/ -2 + x / \ -2 + x/ \-2 + x 2 + x/ \ -2 + x/ \ \/ -2 + x / \ \/ -2 + x / \ \/ -2 + x /| \ -2 + x/ \ \/ -2 + x / \ \/ -2 + x / \ \/ -2 + x /
- (-1 + x)*|- -------------- - -------------- + ----------------------------- + --------------------------------------------------------------------- + -------------------------------------------- - ----------------------------- - ------------------- + ----------------------------- + ------------------------------ + ----------------------------------------------| - -------------- + ----------------------------- + ---------------------------------------------- + ------------------------------
| 5/2 5/2 3 -2 + x 2 3/2 3/2 2 2 (-2 + x)*(2 + x) | 3/2 2 -2 + x (-2 + x)*(2 + x)
\ (-2 + x) (-2 + x) (-2 + x) (-2 + x) (-2 + x) (-2 + x) *(2 + x) (-2 + x) *(2 + x) (-2 + x)*(2 + x) / (-2 + x) (-2 + x)
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2
8*(2 + x)