Mister Exam

Other calculators

Derivative of (x-1)/(x²+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x - 1 
------
 2    
x  + 1
$$\frac{x - 1}{x^{2} + 1}$$
(x - 1)/(x^2 + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
  1      2*x*(x - 1)
------ - -----------
 2                2 
x  + 1    / 2    \  
          \x  + 1/  
$$- \frac{2 x \left(x - 1\right)}{\left(x^{2} + 1\right)^{2}} + \frac{1}{x^{2} + 1}$$
The second derivative [src]
  /                /         2 \\
  |                |      4*x  ||
2*|-2*x + (-1 + x)*|-1 + ------||
  |                |          2||
  \                \     1 + x //
---------------------------------
                    2            
            /     2\             
            \1 + x /             
$$\frac{2 \left(- 2 x + \left(x - 1\right) \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right)\right)}{\left(x^{2} + 1\right)^{2}}$$
The third derivative [src]
  /                           /         2 \\
  |                           |      2*x  ||
  |              4*x*(-1 + x)*|-1 + ------||
  |         2                 |          2||
  |      4*x                  \     1 + x /|
6*|-1 + ------ - --------------------------|
  |          2                  2          |
  \     1 + x              1 + x           /
--------------------------------------------
                         2                  
                 /     2\                   
                 \1 + x /                   
$$\frac{6 \left(\frac{4 x^{2}}{x^{2} + 1} - \frac{4 x \left(x - 1\right) \left(\frac{2 x^{2}}{x^{2} + 1} - 1\right)}{x^{2} + 1} - 1\right)}{\left(x^{2} + 1\right)^{2}}$$