Mister Exam

Other calculators


(x-4)*e^(2*x-1)

Derivative of (x-4)*e^(2*x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         2*x - 1
(x - 4)*e       
(x4)e2x1\left(x - 4\right) e^{2 x - 1}
d /         2*x - 1\
--\(x - 4)*e       /
dx                  
ddx(x4)e2x1\frac{d}{d x} \left(x - 4\right) e^{2 x - 1}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x4f{\left(x \right)} = x - 4; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate x4x - 4 term by term:

      1. Apply the power rule: xx goes to 11

      2. The derivative of the constant (1)4\left(-1\right) 4 is zero.

      The result is: 11

    g(x)=e2x1g{\left(x \right)} = e^{2 x - 1}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2x1u = 2 x - 1.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx(2x1)\frac{d}{d x} \left(2 x - 1\right):

      1. Differentiate 2x12 x - 1 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        2. The derivative of the constant (1)1\left(-1\right) 1 is zero.

        The result is: 22

      The result of the chain rule is:

      2e2x12 e^{2 x - 1}

    The result is: 2(x4)e2x1+e2x12 \left(x - 4\right) e^{2 x - 1} + e^{2 x - 1}

  2. Now simplify:

    (2x7)e2x1\left(2 x - 7\right) e^{2 x - 1}


The answer is:

(2x7)e2x1\left(2 x - 7\right) e^{2 x - 1}

The graph
02468-8-6-4-2-1010-25000000002500000000
The first derivative [src]
 2*x - 1              2*x - 1
e        + 2*(x - 4)*e       
2(x4)e2x1+e2x12 \left(x - 4\right) e^{2 x - 1} + e^{2 x - 1}
The second derivative [src]
            -1 + 2*x
4*(-3 + x)*e        
4(x3)e2x14 \left(x - 3\right) e^{2 x - 1}
The third derivative [src]
              -1 + 2*x
4*(-5 + 2*x)*e        
4(2x5)e2x14 \cdot \left(2 x - 5\right) e^{2 x - 1}
The graph
Derivative of (x-4)*e^(2*x-1)