x*log(cos(x))*x
(x*log(cos(x)))*x
Apply the product rule:
; to find :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of cosine is negative sine:
The result of the chain rule is:
The result is:
; to find :
Apply the power rule: goes to
The result is:
Now simplify:
The answer is:
/ x*sin(x) \ x*|- -------- + log(cos(x))| + x*log(cos(x)) \ cos(x) /
/ / 2 \ \ | | sin (x)| 2*sin(x)| 2*x*sin(x) 2*log(cos(x)) - x*|x*|1 + -------| + --------| - ---------- | | 2 | cos(x) | cos(x) \ \ cos (x)/ /
/ / 2 \ / 2 \ \ | | sin (x)| 6*sin(x) | sin (x)| / 2*x*sin(x)\| -|3*x*|1 + -------| + -------- + x*|1 + -------|*|3 + ----------|| | | 2 | cos(x) | 2 | \ cos(x) /| \ \ cos (x)/ \ cos (x)/ /