Mister Exam

Derivative of xlogcosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*log(cos(x))*x
$$x x \log{\left(\cos{\left(x \right)} \right)}$$
(x*log(cos(x)))*x
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of cosine is negative sine:

        The result of the chain rule is:

      The result is:

    ; to find :

    1. Apply the power rule: goes to

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  /  x*sin(x)              \                
x*|- -------- + log(cos(x))| + x*log(cos(x))
  \   cos(x)               /                
$$x \left(- \frac{x \sin{\left(x \right)}}{\cos{\left(x \right)}} + \log{\left(\cos{\left(x \right)} \right)}\right) + x \log{\left(\cos{\left(x \right)} \right)}$$
The second derivative [src]
                  /  /       2   \           \             
                  |  |    sin (x)|   2*sin(x)|   2*x*sin(x)
2*log(cos(x)) - x*|x*|1 + -------| + --------| - ----------
                  |  |       2   |    cos(x) |     cos(x)  
                  \  \    cos (x)/           /             
$$- x \left(x \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) + \frac{2 \sin{\left(x \right)}}{\cos{\left(x \right)}}\right) - \frac{2 x \sin{\left(x \right)}}{\cos{\left(x \right)}} + 2 \log{\left(\cos{\left(x \right)} \right)}$$
The third derivative [src]
 /    /       2   \                /       2   \                 \
 |    |    sin (x)|   6*sin(x)     |    sin (x)| /    2*x*sin(x)\|
-|3*x*|1 + -------| + -------- + x*|1 + -------|*|3 + ----------||
 |    |       2   |    cos(x)      |       2   | \      cos(x)  /|
 \    \    cos (x)/                \    cos (x)/                 /
$$- (x \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) \left(\frac{2 x \sin{\left(x \right)}}{\cos{\left(x \right)}} + 3\right) + 3 x \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) + \frac{6 \sin{\left(x \right)}}{\cos{\left(x \right)}})$$
The graph
Derivative of xlogcosx