Mister Exam

Other calculators

Derivative of (xexp^(2x)+3)^5

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
            5
/   2*x    \ 
\x*E    + 3/ 
$$\left(e^{2 x} x + 3\right)^{5}$$
(x*E^(2*x) + 3)^5
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the product rule:

        ; to find :

        1. Apply the power rule: goes to

        ; to find :

        1. Let .

        2. The derivative of is itself.

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
            4                     
/   2*x    \  /   2*x         2*x\
\x*E    + 3/ *\5*e    + 10*x*e   /
$$\left(e^{2 x} x + 3\right)^{4} \left(10 x e^{2 x} + 5 e^{2 x}\right)$$
The second derivative [src]
               3                                              
   /       2*x\  /         2  2*x           /       2*x\\  2*x
20*\3 + x*e   / *\(1 + 2*x) *e    + (1 + x)*\3 + x*e   //*e   
$$20 \left(x e^{2 x} + 3\right)^{3} \left(\left(x + 1\right) \left(x e^{2 x} + 3\right) + \left(2 x + 1\right)^{2} e^{2 x}\right) e^{2 x}$$
The third derivative [src]
               2 /            2                                                                       \     
   /       2*x\  |/       2*x\                         3  4*x                        /       2*x\  2*x|  2*x
20*\3 + x*e   / *\\3 + x*e   / *(3 + 2*x) + 3*(1 + 2*x) *e    + 12*(1 + x)*(1 + 2*x)*\3 + x*e   /*e   /*e   
$$20 \left(x e^{2 x} + 3\right)^{2} \left(12 \left(x + 1\right) \left(2 x + 1\right) \left(x e^{2 x} + 3\right) e^{2 x} + 3 \left(2 x + 1\right)^{3} e^{4 x} + \left(2 x + 3\right) \left(x e^{2 x} + 3\right)^{2}\right) e^{2 x}$$