x ------------ 2 x - 3*x + 2
x/(x^2 - 3*x + 2)
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
The answer is:
1 x*(3 - 2*x)
------------ + ---------------
2 2
x - 3*x + 2 / 2 \
\x - 3*x + 2/
/ / 2 \\
| | (-3 + 2*x) ||
2*|3 - 2*x + x*|-1 + ------------||
| | 2 ||
\ \ 2 + x - 3*x//
-----------------------------------
2
/ 2 \
\2 + x - 3*x/
/ / 2 \\
| | (-3 + 2*x) ||
| x*(-3 + 2*x)*|-2 + ------------||
| 2 | 2 ||
| (-3 + 2*x) \ 2 + x - 3*x/|
6*|-1 + ------------ - --------------------------------|
| 2 2 |
\ 2 + x - 3*x 2 + x - 3*x /
--------------------------------------------------------
2
/ 2 \
\2 + x - 3*x/