Mister Exam

Other calculators

Derivative of (x/(x+5))^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       2
/  x  \ 
|-----| 
\x + 5/ 
$$\left(\frac{x}{x + 5}\right)^{2}$$
(x/(x + 5))^2
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Apply the power rule: goes to

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    2                              
   x             /  2       2*x   \
--------*(x + 5)*|----- - --------|
       2         |x + 5          2|
(x + 5)          \        (x + 5) /
-----------------------------------
                 x                 
$$\frac{\frac{x^{2}}{\left(x + 5\right)^{2}} \left(x + 5\right) \left(- \frac{2 x}{\left(x + 5\right)^{2}} + \frac{2}{x + 5}\right)}{x}$$
The second derivative [src]
  /       x  \ /      3*x \
2*|-1 + -----|*|-1 + -----|
  \     5 + x/ \     5 + x/
---------------------------
                 2         
          (5 + x)          
$$\frac{2 \left(\frac{x}{x + 5} - 1\right) \left(\frac{3 x}{x + 5} - 1\right)}{\left(x + 5\right)^{2}}$$
3-я производная [src]
               /                                        2                          \
               |                            4*x      3*x                           |
               |                 x     1 - ----- + --------          x             |
               |          -1 + -----       5 + x          2   -1 + -----           |
  /       x  \ |    1          5 + x               (5 + x)         5 + x     2*x   |
4*|-1 + -----|*|- ----- - ---------- - -------------------- - ---------- - --------|
  \     5 + x/ |  5 + x       x                 x               5 + x             2|
               \                                                           (5 + x) /
------------------------------------------------------------------------------------
                                             2                                      
                                      (5 + x)                                       
$$\frac{4 \left(\frac{x}{x + 5} - 1\right) \left(- \frac{2 x}{\left(x + 5\right)^{2}} - \frac{\frac{x}{x + 5} - 1}{x + 5} - \frac{1}{x + 5} - \frac{\frac{x}{x + 5} - 1}{x} - \frac{\frac{3 x^{2}}{\left(x + 5\right)^{2}} - \frac{4 x}{x + 5} + 1}{x}\right)}{\left(x + 5\right)^{2}}$$
The third derivative [src]
               /                                        2                          \
               |                            4*x      3*x                           |
               |                 x     1 - ----- + --------          x             |
               |          -1 + -----       5 + x          2   -1 + -----           |
  /       x  \ |    1          5 + x               (5 + x)         5 + x     2*x   |
4*|-1 + -----|*|- ----- - ---------- - -------------------- - ---------- - --------|
  \     5 + x/ |  5 + x       x                 x               5 + x             2|
               \                                                           (5 + x) /
------------------------------------------------------------------------------------
                                             2                                      
                                      (5 + x)                                       
$$\frac{4 \left(\frac{x}{x + 5} - 1\right) \left(- \frac{2 x}{\left(x + 5\right)^{2}} - \frac{\frac{x}{x + 5} - 1}{x + 5} - \frac{1}{x + 5} - \frac{\frac{x}{x + 5} - 1}{x} - \frac{\frac{3 x^{2}}{\left(x + 5\right)^{2}} - \frac{4 x}{x + 5} + 1}{x}\right)}{\left(x + 5\right)^{2}}$$