Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
2 x / 2 2*x \ --------*(x + 5)*|----- - --------| 2 |x + 5 2| (x + 5) \ (x + 5) / ----------------------------------- x
/ x \ / 3*x \ 2*|-1 + -----|*|-1 + -----| \ 5 + x/ \ 5 + x/ --------------------------- 2 (5 + x)
/ 2 \ | 4*x 3*x | | x 1 - ----- + -------- x | | -1 + ----- 5 + x 2 -1 + ----- | / x \ | 1 5 + x (5 + x) 5 + x 2*x | 4*|-1 + -----|*|- ----- - ---------- - -------------------- - ---------- - --------| \ 5 + x/ | 5 + x x x 5 + x 2| \ (5 + x) / ------------------------------------------------------------------------------------ 2 (5 + x)
/ 2 \ | 4*x 3*x | | x 1 - ----- + -------- x | | -1 + ----- 5 + x 2 -1 + ----- | / x \ | 1 5 + x (5 + x) 5 + x 2*x | 4*|-1 + -----|*|- ----- - ---------- - -------------------- - ---------- - --------| \ 5 + x/ | 5 + x x x 5 + x 2| \ (5 + x) / ------------------------------------------------------------------------------------ 2 (5 + x)