Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
2
x / 2 2*x \
--------*(x + 5)*|----- - --------|
2 |x + 5 2|
(x + 5) \ (x + 5) /
-----------------------------------
x
/ x \ / 3*x \
2*|-1 + -----|*|-1 + -----|
\ 5 + x/ \ 5 + x/
---------------------------
2
(5 + x)
/ 2 \
| 4*x 3*x |
| x 1 - ----- + -------- x |
| -1 + ----- 5 + x 2 -1 + ----- |
/ x \ | 1 5 + x (5 + x) 5 + x 2*x |
4*|-1 + -----|*|- ----- - ---------- - -------------------- - ---------- - --------|
\ 5 + x/ | 5 + x x x 5 + x 2|
\ (5 + x) /
------------------------------------------------------------------------------------
2
(5 + x)
/ 2 \
| 4*x 3*x |
| x 1 - ----- + -------- x |
| -1 + ----- 5 + x 2 -1 + ----- |
/ x \ | 1 5 + x (5 + x) 5 + x 2*x |
4*|-1 + -----|*|- ----- - ---------- - -------------------- - ---------- - --------|
\ 5 + x/ | 5 + x x x 5 + x 2|
\ (5 + x) /
------------------------------------------------------------------------------------
2
(5 + x)