Mister Exam

Other calculators


x/sqrt(x^2+2*x)

Derivative of x/sqrt(x^2+2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      x      
-------------
   __________
  /  2       
\/  x  + 2*x 
$$\frac{x}{\sqrt{x^{2} + 2 x}}$$
d /      x      \
--|-------------|
dx|   __________|
  |  /  2       |
  \\/  x  + 2*x /
$$\frac{d}{d x} \frac{x}{\sqrt{x^{2} + 2 x}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      1           x*(1 + x)  
------------- - -------------
   __________             3/2
  /  2          / 2      \   
\/  x  + 2*x    \x  + 2*x/   
$$- \frac{x \left(x + 1\right)}{\left(x^{2} + 2 x\right)^{\frac{3}{2}}} + \frac{1}{\sqrt{x^{2} + 2 x}}$$
The second derivative [src]
 /            /             2\\ 
 |            |    3*(1 + x) || 
-|2 + 2*x + x*|1 - ----------|| 
 \            \    x*(2 + x) // 
--------------------------------
                    3/2         
         (x*(2 + x))            
$$- \frac{x \left(1 - \frac{3 \left(x + 1\right)^{2}}{x \left(x + 2\right)}\right) + 2 x + 2}{\left(x \left(x + 2\right)\right)^{\frac{3}{2}}}$$
The third derivative [src]
  /             /             2\             \
  |             |    5*(1 + x) |             |
  |     (1 + x)*|3 - ----------|            2|
  |             \    x*(2 + x) /   3*(1 + x) |
3*|-1 + ------------------------ + ----------|
  \              2 + x             x*(2 + x) /
----------------------------------------------
                           3/2                
                (x*(2 + x))                   
$$\frac{3 \left(\frac{\left(3 - \frac{5 \left(x + 1\right)^{2}}{x \left(x + 2\right)}\right) \left(x + 1\right)}{x + 2} - 1 + \frac{3 \left(x + 1\right)^{2}}{x \left(x + 2\right)}\right)}{\left(x \left(x + 2\right)\right)^{\frac{3}{2}}}$$
The graph
Derivative of x/sqrt(x^2+2*x)