x ------------- __________ / 2 \/ x + 2*x
d / x \ --|-------------| dx| __________| | / 2 | \\/ x + 2*x /
Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 x*(1 + x) ------------- - ------------- __________ 3/2 / 2 / 2 \ \/ x + 2*x \x + 2*x/
/ / 2\\
| | 3*(1 + x) ||
-|2 + 2*x + x*|1 - ----------||
\ \ x*(2 + x) //
--------------------------------
3/2
(x*(2 + x))
/ / 2\ \
| | 5*(1 + x) | |
| (1 + x)*|3 - ----------| 2|
| \ x*(2 + x) / 3*(1 + x) |
3*|-1 + ------------------------ + ----------|
\ 2 + x x*(2 + x) /
----------------------------------------------
3/2
(x*(2 + x))