Apply the quotient rule, which is:
and .
To find :
Apply the power rule: goes to
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 2*x*cos(x) ------- - ---------- 2 3 sin (x) sin (x)
/ / 2 \ \
| | 3*cos (x)| 2*cos(x)|
2*|x*|1 + ---------| - --------|
| | 2 | sin(x) |
\ \ sin (x) / /
--------------------------------
2
sin (x)
/ / 2 \ \
| | 3*cos (x)| |
| 4*x*|2 + ---------|*cos(x)|
| 2 | 2 | |
| 9*cos (x) \ sin (x) / |
2*|3 + --------- - --------------------------|
| 2 sin(x) |
\ sin (x) /
----------------------------------------------
2
sin (x)