Mister Exam

Other calculators


(x/sin(3x)^2)-26

Derivative of (x/sin(3x)^2)-26

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    x         
--------- - 26
   2          
sin (3*x)     
$$\frac{x}{\sin^{2}{\left(3 x \right)}} - 26$$
d /    x         \
--|--------- - 26|
dx|   2          |
  \sin (3*x)     /
$$\frac{d}{d x} \left(\frac{x}{\sin^{2}{\left(3 x \right)}} - 26\right)$$
Detail solution
  1. Differentiate term by term:

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Apply the power rule: goes to

      To find :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    2. The derivative of the constant is zero.

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    1       6*x*cos(3*x)
--------- - ------------
   2            3       
sin (3*x)    sin (3*x)  
$$- \frac{6 x \cos{\left(3 x \right)}}{\sin^{3}{\left(3 x \right)}} + \frac{1}{\sin^{2}{\left(3 x \right)}}$$
The second derivative [src]
  /                          2     \
  |      2*cos(3*x)   9*x*cos (3*x)|
6*|3*x - ---------- + -------------|
  |       sin(3*x)         2       |
  \                     sin (3*x)  /
------------------------------------
                2                   
             sin (3*x)              
$$\frac{6 \cdot \left(3 x + \frac{9 x \cos^{2}{\left(3 x \right)}}{\sin^{2}{\left(3 x \right)}} - \frac{2 \cos{\left(3 x \right)}}{\sin{\left(3 x \right)}}\right)}{\sin^{2}{\left(3 x \right)}}$$
The third derivative [src]
   /         2                3                    \
   |    3*cos (3*x)   12*x*cos (3*x)   8*x*cos(3*x)|
54*|1 + ----------- - -------------- - ------------|
   |        2              3             sin(3*x)  |
   \     sin (3*x)      sin (3*x)                  /
----------------------------------------------------
                        2                           
                     sin (3*x)                      
$$\frac{54 \left(- \frac{8 x \cos{\left(3 x \right)}}{\sin{\left(3 x \right)}} - \frac{12 x \cos^{3}{\left(3 x \right)}}{\sin^{3}{\left(3 x \right)}} + 1 + \frac{3 \cos^{2}{\left(3 x \right)}}{\sin^{2}{\left(3 x \right)}}\right)}{\sin^{2}{\left(3 x \right)}}$$
The graph
Derivative of (x/sin(3x)^2)-26