x -------*log(3*x) 2*x - 1
(x/(2*x - 1))*log(3*x)
Apply the quotient rule, which is:
and .
To find :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
1 / 1 2*x \ ------- + |------- - ----------|*log(3*x) 2*x - 1 |2*x - 1 2| \ (2*x - 1) /
/ 2*x \ / 2*x \ 2*|-1 + --------| 4*|-1 + --------|*log(3*x) 1 \ -1 + 2*x/ \ -1 + 2*x/ - - - ----------------- + -------------------------- x x -1 + 2*x ---------------------------------------------------- -1 + 2*x
/ 2*x \ / 2*x \ / 2*x \ 3*|-1 + --------| 24*|-1 + --------|*log(3*x) 12*|-1 + --------| 2 \ -1 + 2*x/ \ -1 + 2*x/ \ -1 + 2*x/ -- + ----------------- - --------------------------- + ------------------ 2 2 2 x*(-1 + 2*x) x x (-1 + 2*x) ------------------------------------------------------------------------- -1 + 2*x