Mister Exam

Other calculators

Derivative of (x/(2x-1))*ln(3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   x            
-------*log(3*x)
2*x - 1         
$$\frac{x}{2 x - 1} \log{\left(3 x \right)}$$
(x/(2*x - 1))*log(3*x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   1      /   1         2*x    \         
------- + |------- - ----------|*log(3*x)
2*x - 1   |2*x - 1            2|         
          \          (2*x - 1) /         
$$\left(- \frac{2 x}{\left(2 x - 1\right)^{2}} + \frac{1}{2 x - 1}\right) \log{\left(3 x \right)} + \frac{1}{2 x - 1}$$
The second derivative [src]
        /       2*x   \     /       2*x   \         
      2*|-1 + --------|   4*|-1 + --------|*log(3*x)
  1     \     -1 + 2*x/     \     -1 + 2*x/         
- - - ----------------- + --------------------------
  x           x                    -1 + 2*x         
----------------------------------------------------
                      -1 + 2*x                      
$$\frac{\frac{4 \left(\frac{2 x}{2 x - 1} - 1\right) \log{\left(3 x \right)}}{2 x - 1} - \frac{2 \left(\frac{2 x}{2 x - 1} - 1\right)}{x} - \frac{1}{x}}{2 x - 1}$$
The third derivative [src]
       /       2*x   \      /       2*x   \               /       2*x   \
     3*|-1 + --------|   24*|-1 + --------|*log(3*x)   12*|-1 + --------|
2      \     -1 + 2*x/      \     -1 + 2*x/               \     -1 + 2*x/
-- + ----------------- - --------------------------- + ------------------
 2            2                            2              x*(-1 + 2*x)   
x            x                   (-1 + 2*x)                              
-------------------------------------------------------------------------
                                 -1 + 2*x                                
$$\frac{- \frac{24 \left(\frac{2 x}{2 x - 1} - 1\right) \log{\left(3 x \right)}}{\left(2 x - 1\right)^{2}} + \frac{12 \left(\frac{2 x}{2 x - 1} - 1\right)}{x \left(2 x - 1\right)} + \frac{3 \left(\frac{2 x}{2 x - 1} - 1\right)}{x^{2}} + \frac{2}{x^{2}}}{2 x - 1}$$