Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
Rewrite the function to be differentiated:
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of sine is cosine:
To find :
-
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
3 / 2 \ 2
x *\1 + tan (x)/ + 3*x *tan(x)
$$x^{3} \left(\tan^{2}{\left(x \right)} + 1\right) + 3 x^{2} \tan{\left(x \right)}$$
The second derivative
[src]
/ / 2 \ 2 / 2 \ \
2*x*\3*tan(x) + 3*x*\1 + tan (x)/ + x *\1 + tan (x)/*tan(x)/
$$2 x \left(x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 3 x \left(\tan^{2}{\left(x \right)} + 1\right) + 3 \tan{\left(x \right)}\right)$$
The third derivative
[src]
/ / 2 \ 3 / 2 \ / 2 \ 2 / 2 \ \
2*\3*tan(x) + 9*x*\1 + tan (x)/ + x *\1 + tan (x)/*\1 + 3*tan (x)/ + 9*x *\1 + tan (x)/*tan(x)/
$$2 \left(x^{3} \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 9 x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 9 x \left(\tan^{2}{\left(x \right)} + 1\right) + 3 \tan{\left(x \right)}\right)$$