Mister Exam

Derivative of x^3sin2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3         
x *sin(2*x)
x3sin(2x)x^{3} \sin{\left(2 x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x3f{\left(x \right)} = x^{3}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

    g(x)=sin(2x)g{\left(x \right)} = \sin{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2cos(2x)2 \cos{\left(2 x \right)}

    The result is: 2x3cos(2x)+3x2sin(2x)2 x^{3} \cos{\left(2 x \right)} + 3 x^{2} \sin{\left(2 x \right)}

  2. Now simplify:

    x2(2xcos(2x)+3sin(2x))x^{2} \left(2 x \cos{\left(2 x \right)} + 3 \sin{\left(2 x \right)}\right)


The answer is:

x2(2xcos(2x)+3sin(2x))x^{2} \left(2 x \cos{\left(2 x \right)} + 3 \sin{\left(2 x \right)}\right)

The graph
02468-8-6-4-2-1010-50005000
The first derivative [src]
   3               2         
2*x *cos(2*x) + 3*x *sin(2*x)
2x3cos(2x)+3x2sin(2x)2 x^{3} \cos{\left(2 x \right)} + 3 x^{2} \sin{\left(2 x \right)}
The second derivative [src]
    /                2                        \
2*x*\3*sin(2*x) - 2*x *sin(2*x) + 6*x*cos(2*x)/
2x(2x2sin(2x)+6xcos(2x)+3sin(2x))2 x \left(- 2 x^{2} \sin{\left(2 x \right)} + 6 x \cos{\left(2 x \right)} + 3 \sin{\left(2 x \right)}\right)
The third derivative [src]
  /                 2               3                         \
2*\3*sin(2*x) - 18*x *sin(2*x) - 4*x *cos(2*x) + 18*x*cos(2*x)/
2(4x3cos(2x)18x2sin(2x)+18xcos(2x)+3sin(2x))2 \left(- 4 x^{3} \cos{\left(2 x \right)} - 18 x^{2} \sin{\left(2 x \right)} + 18 x \cos{\left(2 x \right)} + 3 \sin{\left(2 x \right)}\right)
The graph
Derivative of x^3sin2x