Mister Exam

Derivative of ((x³-2x²+3)(x⁴+x+1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/ 3      2    \ / 4        \
\x  - 2*x  + 3/*\x  + x + 1/
$$\left(\left(x^{3} - 2 x^{2}\right) + 3\right) \left(\left(x^{4} + x\right) + 1\right)$$
(x^3 - 2*x^2 + 3)*(x^4 + x + 1)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    ; to find :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. Apply the power rule: goes to

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/       3\ / 3      2    \   /          2\ / 4        \
\1 + 4*x /*\x  - 2*x  + 3/ + \-4*x + 3*x /*\x  + x + 1/
$$\left(3 x^{2} - 4 x\right) \left(\left(x^{4} + x\right) + 1\right) + \left(4 x^{3} + 1\right) \left(\left(x^{3} - 2 x^{2}\right) + 3\right)$$
The second derivative [src]
  /           /         4\      2 /     3      2\     /       3\           \
2*\(-2 + 3*x)*\1 + x + x / + 6*x *\3 + x  - 2*x / + x*\1 + 4*x /*(-4 + 3*x)/
$$2 \left(6 x^{2} \left(x^{3} - 2 x^{2} + 3\right) + x \left(3 x - 4\right) \left(4 x^{3} + 1\right) + \left(3 x - 2\right) \left(x^{4} + x + 1\right)\right)$$
The third derivative [src]
  /      /     3\   /       3\                  /     3      2\      3           \
6*\1 + x*\1 + x / + \1 + 4*x /*(-2 + 3*x) + 4*x*\3 + x  - 2*x / + 6*x *(-4 + 3*x)/
$$6 \left(6 x^{3} \left(3 x - 4\right) + x \left(x^{3} + 1\right) + 4 x \left(x^{3} - 2 x^{2} + 3\right) + \left(3 x - 2\right) \left(4 x^{3} + 1\right) + 1\right)$$