Mister Exam

Derivative of (x²-3x)(2x-3)²

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/ 2      \          2
\x  - 3*x/*(2*x - 3) 
(2x3)2(x23x)\left(2 x - 3\right)^{2} \left(x^{2} - 3 x\right)
d // 2      \          2\
--\\x  - 3*x/*(2*x - 3) /
dx                       
ddx(2x3)2(x23x)\frac{d}{d x} \left(2 x - 3\right)^{2} \left(x^{2} - 3 x\right)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x23xf{\left(x \right)} = x^{2} - 3 x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate x23xx^{2} - 3 x term by term:

      1. Apply the power rule: x2x^{2} goes to 2x2 x

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 33

        So, the result is: 3-3

      The result is: 2x32 x - 3

    g(x)=(2x3)2g{\left(x \right)} = \left(2 x - 3\right)^{2}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2x3u = 2 x - 3.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddx(2x3)\frac{d}{d x} \left(2 x - 3\right):

      1. Differentiate 2x32 x - 3 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        2. The derivative of the constant (1)3\left(-1\right) 3 is zero.

        The result is: 22

      The result of the chain rule is:

      8x128 x - 12

    The result is: (2x3)(2x3)2+(8x12)(x23x)\left(2 x - 3\right) \left(2 x - 3\right)^{2} + \left(8 x - 12\right) \left(x^{2} - 3 x\right)

  2. Now simplify:

    16x372x2+90x2716 x^{3} - 72 x^{2} + 90 x - 27


The answer is:

16x372x2+90x2716 x^{3} - 72 x^{2} + 90 x - 27

The graph
02468-8-6-4-2-1010-100000100000
The first derivative [src]
         2                          / 2      \
(2*x - 3) *(-3 + 2*x) + (-12 + 8*x)*\x  - 3*x/
(2x3)(2x3)2+(8x12)(x23x)\left(2 x - 3\right) \left(2 x - 3\right)^{2} + \left(8 x - 12\right) \left(x^{2} - 3 x\right)
The second derivative [src]
  /           2               2\
2*\-12*x + 4*x  + 5*(-3 + 2*x) /
2(4x212x+5(2x3)2)2 \cdot \left(4 x^{2} - 12 x + 5 \left(2 x - 3\right)^{2}\right)
The third derivative [src]
48*(-3 + 2*x)
48(2x3)48 \cdot \left(2 x - 3\right)
The graph
Derivative of (x²-3x)(2x-3)²