Mister Exam

Derivative of u*cos(u\v)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /u\
u*cos|-|
     \v/
$$u \cos{\left(\frac{u}{v} \right)}$$
u*cos(u/v)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of cosine is negative sine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    So, the result is:


The answer is:

The first derivative [src]
 2    /u\
u *sin|-|
      \v/
---------
     2   
    v    
$$\frac{u^{2} \sin{\left(\frac{u}{v} \right)}}{v^{2}}$$
The second derivative [src]
    /                /u\\ 
    |           u*cos|-|| 
  2 |     /u\        \v/| 
-u *|2*sin|-| + --------| 
    \     \v/      v    / 
--------------------------
             3            
            v             
$$- \frac{u^{2} \left(\frac{u \cos{\left(\frac{u}{v} \right)}}{v} + 2 \sin{\left(\frac{u}{v} \right)}\right)}{v^{3}}$$
The third derivative [src]
   /            2    /u\          /u\\
   |           u *sin|-|   6*u*cos|-||
 2 |     /u\         \v/          \v/|
u *|6*sin|-| - --------- + ----------|
   |     \v/        2          v     |
   \               v                 /
--------------------------------------
                   4                  
                  v                   
$$\frac{u^{2} \left(- \frac{u^{2} \sin{\left(\frac{u}{v} \right)}}{v^{2}} + \frac{6 u \cos{\left(\frac{u}{v} \right)}}{v} + 6 \sin{\left(\frac{u}{v} \right)}\right)}{v^{4}}$$