2 /x\ (2*x - 1) *sin|-| \2/
(2*x - 1)^2*sin(x/2)
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
; to find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
2 /x\ (2*x - 1) *cos|-| /x\ \2/ (-4 + 8*x)*sin|-| + ----------------- \2/ 2
2 /x\ (-1 + 2*x) *sin|-| /x\ /x\ \2/ 8*sin|-| + 4*(-1 + 2*x)*cos|-| - ------------------ \2/ \2/ 4
/x\ 2 /x\ /x\ - 6080*sin|-| + (-1 + 2*x) *sin|-| - 160*(-1 + 2*x)*cos|-| \2/ \2/ \2/ ---------------------------------------------------------- 1048576
2 /x\ (-1 + 2*x) *cos|-| /x\ /x\ \2/ 12*cos|-| - 3*(-1 + 2*x)*sin|-| - ------------------ \2/ \2/ 8