Mister Exam

Other calculators

Derivative of (2x-1)^2*sin(x/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         2    /x\
(2*x - 1) *sin|-|
              \2/
$$\left(2 x - 1\right)^{2} \sin{\left(\frac{x}{2} \right)}$$
(2*x - 1)^2*sin(x/2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                             2    /x\
                    (2*x - 1) *cos|-|
              /x\                 \2/
(-4 + 8*x)*sin|-| + -----------------
              \2/           2        
$$\frac{\left(2 x - 1\right)^{2} \cos{\left(\frac{x}{2} \right)}}{2} + \left(8 x - 4\right) \sin{\left(\frac{x}{2} \right)}$$
The second derivative [src]
                                           2    /x\
                                 (-1 + 2*x) *sin|-|
     /x\                   /x\                  \2/
8*sin|-| + 4*(-1 + 2*x)*cos|-| - ------------------
     \2/                   \2/           4         
$$- \frac{\left(2 x - 1\right)^{2} \sin{\left(\frac{x}{2} \right)}}{4} + 4 \left(2 x - 1\right) \cos{\left(\frac{x}{2} \right)} + 8 \sin{\left(\frac{x}{2} \right)}$$
20-я производная [src]
          /x\             2    /x\                     /x\
- 6080*sin|-| + (-1 + 2*x) *sin|-| - 160*(-1 + 2*x)*cos|-|
          \2/                  \2/                     \2/
----------------------------------------------------------
                         1048576                          
$$\frac{\left(2 x - 1\right)^{2} \sin{\left(\frac{x}{2} \right)} - 160 \left(2 x - 1\right) \cos{\left(\frac{x}{2} \right)} - 6080 \sin{\left(\frac{x}{2} \right)}}{1048576}$$
The third derivative [src]
                                            2    /x\
                                  (-1 + 2*x) *cos|-|
      /x\                   /x\                  \2/
12*cos|-| - 3*(-1 + 2*x)*sin|-| - ------------------
      \2/                   \2/           8         
$$- \frac{\left(2 x - 1\right)^{2} \cos{\left(\frac{x}{2} \right)}}{8} - 3 \left(2 x - 1\right) \sin{\left(\frac{x}{2} \right)} + 12 \cos{\left(\frac{x}{2} \right)}$$