Mister Exam

Other calculators

Derivative of (2x-1)/(3x^2+4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2*x - 1 
--------
   2    
3*x  + 4
$$\frac{2 x - 1}{3 x^{2} + 4}$$
(2*x - 1)/(3*x^2 + 4)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   2       6*x*(2*x - 1)
-------- - -------------
   2                  2 
3*x  + 4    /   2    \  
            \3*x  + 4/  
$$- \frac{6 x \left(2 x - 1\right)}{\left(3 x^{2} + 4\right)^{2}} + \frac{2}{3 x^{2} + 4}$$
The second derivative [src]
  /                  /          2  \\
  |                  |      12*x   ||
6*|-4*x + (-1 + 2*x)*|-1 + --------||
  |                  |            2||
  \                  \     4 + 3*x //
-------------------------------------
                       2             
             /       2\              
             \4 + 3*x /              
$$\frac{6 \left(- 4 x + \left(2 x - 1\right) \left(\frac{12 x^{2}}{3 x^{2} + 4} - 1\right)\right)}{\left(3 x^{2} + 4\right)^{2}}$$
The third derivative [src]
   /                               /          2  \\
   |                               |       6*x   ||
   |                6*x*(-1 + 2*x)*|-1 + --------||
   |          2                    |            2||
   |      12*x                     \     4 + 3*x /|
36*|-1 + -------- - ------------------------------|
   |            2                     2           |
   \     4 + 3*x               4 + 3*x            /
---------------------------------------------------
                              2                    
                    /       2\                     
                    \4 + 3*x /                     
$$\frac{36 \left(\frac{12 x^{2}}{3 x^{2} + 4} - \frac{6 x \left(2 x - 1\right) \left(\frac{6 x^{2}}{3 x^{2} + 4} - 1\right)}{3 x^{2} + 4} - 1\right)}{\left(3 x^{2} + 4\right)^{2}}$$