Mister Exam

Other calculators

Derivative of ((2x)/(x+2))-3sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 2*x            
----- - 3*sin(x)
x + 2           
2xx+23sin(x)\frac{2 x}{x + 2} - 3 \sin{\left(x \right)}
(2*x)/(x + 2) - 3*sin(x)
Detail solution
  1. Differentiate 2xx+23sin(x)\frac{2 x}{x + 2} - 3 \sin{\left(x \right)} term by term:

    1. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=2xf{\left(x \right)} = 2 x and g(x)=x+2g{\left(x \right)} = x + 2.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Differentiate x+2x + 2 term by term:

        1. The derivative of the constant 22 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      Now plug in to the quotient rule:

      4(x+2)2\frac{4}{\left(x + 2\right)^{2}}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      So, the result is: 3cos(x)- 3 \cos{\left(x \right)}

    The result is: 3cos(x)+4(x+2)2- 3 \cos{\left(x \right)} + \frac{4}{\left(x + 2\right)^{2}}


The answer is:

3cos(x)+4(x+2)2- 3 \cos{\left(x \right)} + \frac{4}{\left(x + 2\right)^{2}}

The graph
02468-8-6-4-2-1010-5001000
The first derivative [src]
              2       2*x   
-3*cos(x) + ----- - --------
            x + 2          2
                    (x + 2) 
2x(x+2)23cos(x)+2x+2- \frac{2 x}{\left(x + 2\right)^{2}} - 3 \cos{\left(x \right)} + \frac{2}{x + 2}
The second derivative [src]
     4                    4*x   
- -------- + 3*sin(x) + --------
         2                     3
  (2 + x)               (2 + x) 
4x(x+2)3+3sin(x)4(x+2)2\frac{4 x}{\left(x + 2\right)^{3}} + 3 \sin{\left(x \right)} - \frac{4}{\left(x + 2\right)^{2}}
The third derivative [src]
  /   4         4*x            \
3*|-------- - -------- + cos(x)|
  |       3          4         |
  \(2 + x)    (2 + x)          /
3(4x(x+2)4+cos(x)+4(x+2)3)3 \left(- \frac{4 x}{\left(x + 2\right)^{4}} + \cos{\left(x \right)} + \frac{4}{\left(x + 2\right)^{3}}\right)