Mister Exam

Other calculators


2^x*sin^2x

Derivative of 2^x*sin^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x    2   
2 *sin (x)
2xsin2(x)2^{x} \sin^{2}{\left(x \right)}
d / x    2   \
--\2 *sin (x)/
dx            
ddx2xsin2(x)\frac{d}{d x} 2^{x} \sin^{2}{\left(x \right)}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=2xf{\left(x \right)} = 2^{x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. ddx2x=2xlog(2)\frac{d}{d x} 2^{x} = 2^{x} \log{\left(2 \right)}

    g(x)=sin2(x)g{\left(x \right)} = \sin^{2}{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=sin(x)u = \sin{\left(x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result of the chain rule is:

      2sin(x)cos(x)2 \sin{\left(x \right)} \cos{\left(x \right)}

    The result is: 2xlog(2)sin2(x)+22xsin(x)cos(x)2^{x} \log{\left(2 \right)} \sin^{2}{\left(x \right)} + 2 \cdot 2^{x} \sin{\left(x \right)} \cos{\left(x \right)}

  2. Now simplify:

    2x(sin(2x)log(2)cos(2x)2+log(2)2)2^{x} \left(\sin{\left(2 x \right)} - \frac{\log{\left(2 \right)} \cos{\left(2 x \right)}}{2} + \frac{\log{\left(2 \right)}}{2}\right)


The answer is:

2x(sin(2x)log(2)cos(2x)2+log(2)2)2^{x} \left(\sin{\left(2 x \right)} - \frac{\log{\left(2 \right)} \cos{\left(2 x \right)}}{2} + \frac{\log{\left(2 \right)}}{2}\right)

The graph
02468-8-6-4-2-1010-20002000
The first derivative [src]
 x    2                x              
2 *sin (x)*log(2) + 2*2 *cos(x)*sin(x)
2xlog(2)sin2(x)+22xsin(x)cos(x)2^{x} \log{\left(2 \right)} \sin^{2}{\left(x \right)} + 2 \cdot 2^{x} \sin{\left(x \right)} \cos{\left(x \right)}
The second derivative [src]
 x /       2           2         2       2                            \
2 *\- 2*sin (x) + 2*cos (x) + log (2)*sin (x) + 4*cos(x)*log(2)*sin(x)/
2x(2sin2(x)+log(2)2sin2(x)+4log(2)sin(x)cos(x)+2cos2(x))2^{x} \left(- 2 \sin^{2}{\left(x \right)} + \log{\left(2 \right)}^{2} \sin^{2}{\left(x \right)} + 4 \log{\left(2 \right)} \sin{\left(x \right)} \cos{\left(x \right)} + 2 \cos^{2}{\left(x \right)}\right)
The third derivative [src]
 x /   3       2                          /   2         2   \               2                 \
2 *\log (2)*sin (x) - 8*cos(x)*sin(x) - 6*\sin (x) - cos (x)/*log(2) + 6*log (2)*cos(x)*sin(x)/
2x(log(2)3sin2(x)8sin(x)cos(x)+6log(2)2sin(x)cos(x)6(sin2(x)cos2(x))log(2))2^{x} \left(\log{\left(2 \right)}^{3} \sin^{2}{\left(x \right)} - 8 \sin{\left(x \right)} \cos{\left(x \right)} + 6 \log{\left(2 \right)}^{2} \sin{\left(x \right)} \cos{\left(x \right)} - 6 \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \log{\left(2 \right)}\right)
The graph
Derivative of 2^x*sin^2x