Mister Exam

Other calculators

Derivative of 2^tgx+(sqrt(x))*sin2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 tan(x)     ___         
2       + \/ x *sin(2*x)
$$2^{\tan{\left(x \right)}} + \sqrt{x} \sin{\left(2 x \right)}$$
2^tan(x) + sqrt(x)*sin(2*x)
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. Then, apply the chain rule. Multiply by :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    3. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
sin(2*x)       ___             tan(x) /       2   \       
-------- + 2*\/ x *cos(2*x) + 2      *\1 + tan (x)/*log(2)
    ___                                                   
2*\/ x                                                    
$$2^{\tan{\left(x \right)}} \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(2 \right)} + 2 \sqrt{x} \cos{\left(2 x \right)} + \frac{\sin{\left(2 x \right)}}{2 \sqrt{x}}$$
The second derivative [src]
                                                                  2                                                
      ___            2*cos(2*x)   sin(2*x)    tan(x) /       2   \     2         tan(x) /       2   \              
- 4*\/ x *sin(2*x) + ---------- - -------- + 2      *\1 + tan (x)/ *log (2) + 2*2      *\1 + tan (x)/*log(2)*tan(x)
                         ___          3/2                                                                          
                       \/ x        4*x                                                                             
$$2^{\tan{\left(x \right)}} \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \log{\left(2 \right)}^{2} + 2 \cdot 2^{\tan{\left(x \right)}} \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(2 \right)} \tan{\left(x \right)} - 4 \sqrt{x} \sin{\left(2 x \right)} + \frac{2 \cos{\left(2 x \right)}}{\sqrt{x}} - \frac{\sin{\left(2 x \right)}}{4 x^{\frac{3}{2}}}$$
The third derivative [src]
                                                                                 3                                  2                                                                          2               
      ___            6*sin(2*x)   3*cos(2*x)   3*sin(2*x)    tan(x) /       2   \     3         tan(x) /       2   \              tan(x)    2    /       2   \             tan(x) /       2   \     2          
- 8*\/ x *cos(2*x) - ---------- - ---------- + ---------- + 2      *\1 + tan (x)/ *log (2) + 2*2      *\1 + tan (x)/ *log(2) + 4*2      *tan (x)*\1 + tan (x)/*log(2) + 6*2      *\1 + tan (x)/ *log (2)*tan(x)
                         ___           3/2          5/2                                                                                                                                                        
                       \/ x         2*x          8*x                                                                                                                                                           
$$2^{\tan{\left(x \right)}} \left(\tan^{2}{\left(x \right)} + 1\right)^{3} \log{\left(2 \right)}^{3} + 6 \cdot 2^{\tan{\left(x \right)}} \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \log{\left(2 \right)}^{2} \tan{\left(x \right)} + 2 \cdot 2^{\tan{\left(x \right)}} \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \log{\left(2 \right)} + 4 \cdot 2^{\tan{\left(x \right)}} \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(2 \right)} \tan^{2}{\left(x \right)} - 8 \sqrt{x} \cos{\left(2 x \right)} - \frac{6 \sin{\left(2 x \right)}}{\sqrt{x}} - \frac{3 \cos{\left(2 x \right)}}{2 x^{\frac{3}{2}}} + \frac{3 \sin{\left(2 x \right)}}{8 x^{\frac{5}{2}}}$$