Mister Exam

Other calculators

Derivative of 2^(tg(4x+5))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 tan(4*x + 5)
2            
2tan(4x+5)2^{\tan{\left(4 x + 5 \right)}}
2^tan(4*x + 5)
Detail solution
  1. Let u=tan(4x+5)u = \tan{\left(4 x + 5 \right)}.

  2. ddu2u=2ulog(2)\frac{d}{d u} 2^{u} = 2^{u} \log{\left(2 \right)}

  3. Then, apply the chain rule. Multiply by ddxtan(4x+5)\frac{d}{d x} \tan{\left(4 x + 5 \right)}:

    1. Rewrite the function to be differentiated:

      tan(4x+5)=sin(4x+5)cos(4x+5)\tan{\left(4 x + 5 \right)} = \frac{\sin{\left(4 x + 5 \right)}}{\cos{\left(4 x + 5 \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(4x+5)f{\left(x \right)} = \sin{\left(4 x + 5 \right)} and g(x)=cos(4x+5)g{\left(x \right)} = \cos{\left(4 x + 5 \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=4x+5u = 4 x + 5.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx(4x+5)\frac{d}{d x} \left(4 x + 5\right):

        1. Differentiate 4x+54 x + 5 term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          2. The derivative of the constant 55 is zero.

          The result is: 44

        The result of the chain rule is:

        4cos(4x+5)4 \cos{\left(4 x + 5 \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=4x+5u = 4 x + 5.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx(4x+5)\frac{d}{d x} \left(4 x + 5\right):

        1. Differentiate 4x+54 x + 5 term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          2. The derivative of the constant 55 is zero.

          The result is: 44

        The result of the chain rule is:

        4sin(4x+5)- 4 \sin{\left(4 x + 5 \right)}

      Now plug in to the quotient rule:

      4sin2(4x+5)+4cos2(4x+5)cos2(4x+5)\frac{4 \sin^{2}{\left(4 x + 5 \right)} + 4 \cos^{2}{\left(4 x + 5 \right)}}{\cos^{2}{\left(4 x + 5 \right)}}

    The result of the chain rule is:

    2tan(4x+5)(4sin2(4x+5)+4cos2(4x+5))log(2)cos2(4x+5)\frac{2^{\tan{\left(4 x + 5 \right)}} \left(4 \sin^{2}{\left(4 x + 5 \right)} + 4 \cos^{2}{\left(4 x + 5 \right)}\right) \log{\left(2 \right)}}{\cos^{2}{\left(4 x + 5 \right)}}

  4. Now simplify:

    2tan(4x+5)+2log(2)cos2(4x+5)\frac{2^{\tan{\left(4 x + 5 \right)} + 2} \log{\left(2 \right)}}{\cos^{2}{\left(4 x + 5 \right)}}


The answer is:

2tan(4x+5)+2log(2)cos2(4x+5)\frac{2^{\tan{\left(4 x + 5 \right)} + 2} \log{\left(2 \right)}}{\cos^{2}{\left(4 x + 5 \right)}}

The graph
02468-8-6-4-2-101005e21
The first derivative [src]
 tan(4*x + 5) /         2         \       
2            *\4 + 4*tan (4*x + 5)/*log(2)
2tan(4x+5)(4tan2(4x+5)+4)log(2)2^{\tan{\left(4 x + 5 \right)}} \left(4 \tan^{2}{\left(4 x + 5 \right)} + 4\right) \log{\left(2 \right)}
The second derivative [src]
    tan(5 + 4*x) /       2         \ /                 /       2         \       \       
16*2            *\1 + tan (5 + 4*x)/*\2*tan(5 + 4*x) + \1 + tan (5 + 4*x)/*log(2)/*log(2)
162tan(4x+5)((tan2(4x+5)+1)log(2)+2tan(4x+5))(tan2(4x+5)+1)log(2)16 \cdot 2^{\tan{\left(4 x + 5 \right)}} \left(\left(\tan^{2}{\left(4 x + 5 \right)} + 1\right) \log{\left(2 \right)} + 2 \tan{\left(4 x + 5 \right)}\right) \left(\tan^{2}{\left(4 x + 5 \right)} + 1\right) \log{\left(2 \right)}
The third derivative [src]
                                     /                                         2                                                    \       
    tan(5 + 4*x) /       2         \ |         2            /       2         \     2        /       2         \                    |       
64*2            *\1 + tan (5 + 4*x)/*\2 + 6*tan (5 + 4*x) + \1 + tan (5 + 4*x)/ *log (2) + 6*\1 + tan (5 + 4*x)/*log(2)*tan(5 + 4*x)/*log(2)
642tan(4x+5)(tan2(4x+5)+1)((tan2(4x+5)+1)2log(2)2+6(tan2(4x+5)+1)log(2)tan(4x+5)+6tan2(4x+5)+2)log(2)64 \cdot 2^{\tan{\left(4 x + 5 \right)}} \left(\tan^{2}{\left(4 x + 5 \right)} + 1\right) \left(\left(\tan^{2}{\left(4 x + 5 \right)} + 1\right)^{2} \log{\left(2 \right)}^{2} + 6 \left(\tan^{2}{\left(4 x + 5 \right)} + 1\right) \log{\left(2 \right)} \tan{\left(4 x + 5 \right)} + 6 \tan^{2}{\left(4 x + 5 \right)} + 2\right) \log{\left(2 \right)}