Mister Exam

Derivative of 2^log(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 log(x)
2      
$$2^{\log{\left(x \right)}}$$
2^log(x)
Detail solution
  1. Let .

  2. Then, apply the chain rule. Multiply by :

    1. The derivative of is .

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
 log(x)       
2      *log(2)
--------------
      x       
$$\frac{2^{\log{\left(x \right)}} \log{\left(2 \right)}}{x}$$
The second derivative [src]
 log(x)                     
2      *(-1 + log(2))*log(2)
----------------------------
              2             
             x              
$$\frac{2^{\log{\left(x \right)}} \left(-1 + \log{\left(2 \right)}\right) \log{\left(2 \right)}}{x^{2}}$$
The third derivative [src]
 log(x) /       2              \       
2      *\2 + log (2) - 3*log(2)/*log(2)
---------------------------------------
                    3                  
                   x                   
$$\frac{2^{\log{\left(x \right)}} \left(- 3 \log{\left(2 \right)} + \log{\left(2 \right)}^{2} + 2\right) \log{\left(2 \right)}}{x^{3}}$$
The graph
Derivative of 2^log(x)