Detail solution
-
Let .
-
-
Then, apply the chain rule. Multiply by :
-
The derivative of is .
The result of the chain rule is:
The answer is:
The first derivative
[src]
log(x)
2 *log(2)
--------------
x
$$\frac{2^{\log{\left(x \right)}} \log{\left(2 \right)}}{x}$$
The second derivative
[src]
log(x)
2 *(-1 + log(2))*log(2)
----------------------------
2
x
$$\frac{2^{\log{\left(x \right)}} \left(-1 + \log{\left(2 \right)}\right) \log{\left(2 \right)}}{x^{2}}$$
The third derivative
[src]
log(x) / 2 \
2 *\2 + log (2) - 3*log(2)/*log(2)
---------------------------------------
3
x
$$\frac{2^{\log{\left(x \right)}} \left(- 3 \log{\left(2 \right)} + \log{\left(2 \right)}^{2} + 2\right) \log{\left(2 \right)}}{x^{3}}$$