Mister Exam

Other calculators

Derivative of 2^(cos(x)/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 cos(x)
 ------
   2   
2      
$$2^{\frac{\cos{\left(x \right)}}{2}}$$
2^(cos(x)/2)
Detail solution
  1. Let .

  2. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of cosine is negative sine:

      So, the result is:

    The result of the chain rule is:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
  cos(x)               
  ------               
    2                  
-2      *log(2)*sin(x) 
-----------------------
           2           
$$- \frac{2^{\frac{\cos{\left(x \right)}}{2}} \log{\left(2 \right)} \sin{\left(x \right)}}{2}$$
The second derivative [src]
 cos(x)                                    
 ------                                    
   2    /               2          \       
2      *\-2*cos(x) + sin (x)*log(2)/*log(2)
-------------------------------------------
                     4                     
$$\frac{2^{\frac{\cos{\left(x \right)}}{2}} \left(\log{\left(2 \right)} \sin^{2}{\left(x \right)} - 2 \cos{\left(x \right)}\right) \log{\left(2 \right)}}{4}$$
The third derivative [src]
 cos(x)                                                      
 ------                                                      
   2    /       2       2                     \              
2      *\4 - log (2)*sin (x) + 6*cos(x)*log(2)/*log(2)*sin(x)
-------------------------------------------------------------
                              8                              
$$\frac{2^{\frac{\cos{\left(x \right)}}{2}} \left(- \log{\left(2 \right)}^{2} \sin^{2}{\left(x \right)} + 6 \log{\left(2 \right)} \cos{\left(x \right)} + 4\right) \log{\left(2 \right)} \sin{\left(x \right)}}{8}$$