Mister Exam

Other calculators

Derivative of 2+x*sqrt(3-x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        _______
2 + x*\/ 3 - x 
$$x \sqrt{3 - x} + 2$$
2 + x*sqrt(3 - x)
Detail solution
  1. Differentiate term by term:

    1. The derivative of the constant is zero.

    2. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        The result of the chain rule is:

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  _______        x     
\/ 3 - x  - -----------
                _______
            2*\/ 3 - x 
$$- \frac{x}{2 \sqrt{3 - x}} + \sqrt{3 - x}$$
The second derivative [src]
 /        x    \ 
-|1 + ---------| 
 \    4*(3 - x)/ 
-----------------
      _______    
    \/ 3 - x     
$$- \frac{\frac{x}{4 \left(3 - x\right)} + 1}{\sqrt{3 - x}}$$
The third derivative [src]
   /      x  \
-3*|2 + -----|
   \    3 - x/
--------------
          3/2 
 8*(3 - x)    
$$- \frac{3 \left(\frac{x}{3 - x} + 2\right)}{8 \left(3 - x\right)^{\frac{3}{2}}}$$