Mister Exam

Derivative of 2(1+sinx)½+10

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2*(1 + sin(x))*1/2 + 10
2(sin(x)+1)12+102 \left(\sin{\left(x \right)} + 1\right) \frac{1}{2} + 10
d                          
--(2*(1 + sin(x))*1/2 + 10)
dx                         
ddx(2(sin(x)+1)12+10)\frac{d}{d x} \left(2 \left(\sin{\left(x \right)} + 1\right) \frac{1}{2} + 10\right)
Detail solution
  1. Differentiate 2(sin(x)+1)12+102 \left(\sin{\left(x \right)} + 1\right) \frac{1}{2} + 10 term by term:

    1. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=2sin(x)+2f{\left(x \right)} = 2 \sin{\left(x \right)} + 2 and g(x)=2g{\left(x \right)} = 2.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Differentiate 2sin(x)+22 \sin{\left(x \right)} + 2 term by term:

        1. The derivative of the constant 22 is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of sine is cosine:

            ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

          So, the result is: 2cos(x)2 \cos{\left(x \right)}

        The result is: 2cos(x)2 \cos{\left(x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of the constant 22 is zero.

      Now plug in to the quotient rule:

      cos(x)\cos{\left(x \right)}

    2. The derivative of the constant 1010 is zero.

    The result is: cos(x)\cos{\left(x \right)}


The answer is:

cos(x)\cos{\left(x \right)}

The graph
02468-8-6-4-2-101020-10
The first derivative [src]
cos(x)
cos(x)\cos{\left(x \right)}
The second derivative [src]
-sin(x)
sin(x)- \sin{\left(x \right)}
The third derivative [src]
-cos(x)
cos(x)- \cos{\left(x \right)}
The graph
Derivative of 2(1+sinx)½+10