7 3
2*x + 14*x - 5*x + 1
----------------------
_________
\/ 3*x + 1
(2*x^7 + 14*x^3 - 5*x + 1)/sqrt(3*x + 1)
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
6 2 / 7 3 \
-5 + 14*x + 42*x 3*\2*x + 14*x - 5*x + 1/
------------------ - --------------------------
_________ 3/2
\/ 3*x + 1 2*(3*x + 1)
/ 6 2 / 7 3\\
| -5 + 14*x + 42*x / 4\ 9*\1 - 5*x + 2*x + 14*x /|
3*|- ------------------ + 28*x*\1 + x / + --------------------------|
| 1 + 3*x 2 |
\ 4*(1 + 3*x) /
---------------------------------------------------------------------
_________
\/ 1 + 3*x
/ / 7 3\ / 6 2\ / 4\\
| 4 135*\1 - 5*x + 2*x + 14*x / 27*\-5 + 14*x + 42*x / 126*x*\1 + x /|
3*|28 + 140*x - ---------------------------- + ----------------------- - --------------|
| 3 2 1 + 3*x |
\ 8*(1 + 3*x) 4*(1 + 3*x) /
-----------------------------------------------------------------------------------------
_________
\/ 1 + 3*x