Mister Exam

Other calculators

Derivative of (2*x^7+14*x^3-5*x+1)/sqrt(3*x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   7       3          
2*x  + 14*x  - 5*x + 1
----------------------
       _________      
     \/ 3*x + 1       
$$\frac{\left(- 5 x + \left(2 x^{7} + 14 x^{3}\right)\right) + 1}{\sqrt{3 x + 1}}$$
(2*x^7 + 14*x^3 - 5*x + 1)/sqrt(3*x + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      3. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      4. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         6       2     /   7       3          \
-5 + 14*x  + 42*x    3*\2*x  + 14*x  - 5*x + 1/
------------------ - --------------------------
     _________                        3/2      
   \/ 3*x + 1              2*(3*x + 1)         
$$\frac{14 x^{6} + 42 x^{2} - 5}{\sqrt{3 x + 1}} - \frac{3 \left(\left(- 5 x + \left(2 x^{7} + 14 x^{3}\right)\right) + 1\right)}{2 \left(3 x + 1\right)^{\frac{3}{2}}}$$
The second derivative [src]
  /           6       2                     /             7       3\\
  |  -5 + 14*x  + 42*x         /     4\   9*\1 - 5*x + 2*x  + 14*x /|
3*|- ------------------ + 28*x*\1 + x / + --------------------------|
  |       1 + 3*x                                           2       |
  \                                              4*(1 + 3*x)        /
---------------------------------------------------------------------
                               _________                             
                             \/ 1 + 3*x                              
$$\frac{3 \left(28 x \left(x^{4} + 1\right) - \frac{14 x^{6} + 42 x^{2} - 5}{3 x + 1} + \frac{9 \left(2 x^{7} + 14 x^{3} - 5 x + 1\right)}{4 \left(3 x + 1\right)^{2}}\right)}{\sqrt{3 x + 1}}$$
The third derivative [src]
  /                  /             7       3\      /         6       2\         /     4\\
  |          4   135*\1 - 5*x + 2*x  + 14*x /   27*\-5 + 14*x  + 42*x /   126*x*\1 + x /|
3*|28 + 140*x  - ---------------------------- + ----------------------- - --------------|
  |                                 3                            2           1 + 3*x    |
  \                      8*(1 + 3*x)                  4*(1 + 3*x)                       /
-----------------------------------------------------------------------------------------
                                         _________                                       
                                       \/ 1 + 3*x                                        
$$\frac{3 \left(140 x^{4} - \frac{126 x \left(x^{4} + 1\right)}{3 x + 1} + 28 + \frac{27 \left(14 x^{6} + 42 x^{2} - 5\right)}{4 \left(3 x + 1\right)^{2}} - \frac{135 \left(2 x^{7} + 14 x^{3} - 5 x + 1\right)}{8 \left(3 x + 1\right)^{3}}\right)}{\sqrt{3 x + 1}}$$