Mister Exam

Derivative of 2*3^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   x
2*3 
$$2 \cdot 3^{x}$$
d /   x\
--\2*3 /
dx      
$$\frac{d}{d x} 2 \cdot 3^{x}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    So, the result is:


The answer is:

The graph
The first derivative [src]
   x       
2*3 *log(3)
$$2 \cdot 3^{x} \log{\left(3 \right)}$$
The second derivative [src]
   x    2   
2*3 *log (3)
$$2 \cdot 3^{x} \log{\left(3 \right)}^{2}$$
The third derivative [src]
   x    3   
2*3 *log (3)
$$2 \cdot 3^{x} \log{\left(3 \right)}^{3}$$
3-я производная [src]
   x    3   
2*3 *log (3)
$$2 \cdot 3^{x} \log{\left(3 \right)}^{3}$$
The graph
Derivative of 2*3^x