Mister Exam

Other calculators


2*(tan(x)*sqrt(x)-sqrt(x))

Derivative of 2*(tan(x)*sqrt(x)-sqrt(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  /         ___     ___\
2*\tan(x)*\/ x  - \/ x /
$$2 \left(\sqrt{x} \tan{\left(x \right)} - \sqrt{x}\right)$$
2*(tan(x)*sqrt(x) - sqrt(x))
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Differentiate term by term:

      1. Apply the product rule:

        ; to find :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. The derivative of sine is cosine:

          To find :

          1. The derivative of cosine is negative sine:

          Now plug in to the quotient rule:

        ; to find :

        1. Apply the power rule: goes to

        The result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    1     tan(x)       ___ /       2   \
- ----- + ------ + 2*\/ x *\1 + tan (x)/
    ___     ___                         
  \/ x    \/ x                          
$$2 \sqrt{x} \left(\tan^{2}{\left(x \right)} + 1\right) + \frac{\tan{\left(x \right)}}{\sqrt{x}} - \frac{1}{\sqrt{x}}$$
The second derivative [src]
           /       2   \                                        
  1      2*\1 + tan (x)/   tan(x)       ___ /       2   \       
------ + --------------- - ------ + 4*\/ x *\1 + tan (x)/*tan(x)
   3/2          ___           3/2                               
2*x           \/ x         2*x                                  
$$4 \sqrt{x} \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)}{\sqrt{x}} - \frac{\tan{\left(x \right)}}{2 x^{\frac{3}{2}}} + \frac{1}{2 x^{\frac{3}{2}}}$$
The third derivative [src]
                                2     /       2   \                /       2   \                                       
    3          ___ /       2   \    3*\1 + tan (x)/   3*tan(x)   6*\1 + tan (x)/*tan(x)       ___    2    /       2   \
- ------ + 4*\/ x *\1 + tan (x)/  - --------------- + -------- + ---------------------- + 8*\/ x *tan (x)*\1 + tan (x)/
     5/2                                    3/2           5/2              ___                                         
  4*x                                    2*x           4*x               \/ x                                          
$$4 \sqrt{x} \left(\tan^{2}{\left(x \right)} + 1\right)^{2} + 8 \sqrt{x} \left(\tan^{2}{\left(x \right)} + 1\right) \tan^{2}{\left(x \right)} + \frac{6 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}}{\sqrt{x}} - \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)}{2 x^{\frac{3}{2}}} + \frac{3 \tan{\left(x \right)}}{4 x^{\frac{5}{2}}} - \frac{3}{4 x^{\frac{5}{2}}}$$
The graph
Derivative of 2*(tan(x)*sqrt(x)-sqrt(x))