Mister Exam

Other calculators


(2*sin(x)+1,5*cos(x))

Derivative of (2*sin(x)+1,5*cos(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
           3*cos(x)
2*sin(x) + --------
              2    
2sin(x)+3cos(x)22 \sin{\left(x \right)} + \frac{3 \cos{\left(x \right)}}{2}
d /           3*cos(x)\
--|2*sin(x) + --------|
dx\              2    /
ddx(2sin(x)+3cos(x)2)\frac{d}{d x} \left(2 \sin{\left(x \right)} + \frac{3 \cos{\left(x \right)}}{2}\right)
Detail solution
  1. Differentiate 2sin(x)+3cos(x)22 \sin{\left(x \right)} + \frac{3 \cos{\left(x \right)}}{2} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      So, the result is: 2cos(x)2 \cos{\left(x \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      So, the result is: 3sin(x)2- \frac{3 \sin{\left(x \right)}}{2}

    The result is: 3sin(x)2+2cos(x)- \frac{3 \sin{\left(x \right)}}{2} + 2 \cos{\left(x \right)}


The answer is:

3sin(x)2+2cos(x)- \frac{3 \sin{\left(x \right)}}{2} + 2 \cos{\left(x \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
           3*sin(x)
2*cos(x) - --------
              2    
3sin(x)2+2cos(x)- \frac{3 \sin{\left(x \right)}}{2} + 2 \cos{\left(x \right)}
The second derivative [src]
 /           3*cos(x)\
-|2*sin(x) + --------|
 \              2    /
(2sin(x)+3cos(x)2)- (2 \sin{\left(x \right)} + \frac{3 \cos{\left(x \right)}}{2})
The third derivative [src]
            3*sin(x)
-2*cos(x) + --------
               2    
3sin(x)22cos(x)\frac{3 \sin{\left(x \right)}}{2} - 2 \cos{\left(x \right)}
The graph
Derivative of (2*sin(x)+1,5*cos(x))