Mister Exam

Derivative of 2*sin(x/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x\
2*sin|-|
     \2/
2sin(x2)2 \sin{\left(\frac{x}{2} \right)}
2*sin(x/2)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=x2u = \frac{x}{2}.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 12\frac{1}{2}

      The result of the chain rule is:

      cos(x2)2\frac{\cos{\left(\frac{x}{2} \right)}}{2}

    So, the result is: cos(x2)\cos{\left(\frac{x}{2} \right)}

  2. Now simplify:

    cos(x2)\cos{\left(\frac{x}{2} \right)}


The answer is:

cos(x2)\cos{\left(\frac{x}{2} \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
   /x\
cos|-|
   \2/
cos(x2)\cos{\left(\frac{x}{2} \right)}
The second derivative [src]
    /x\ 
-sin|-| 
    \2/ 
--------
   2    
sin(x2)2- \frac{\sin{\left(\frac{x}{2} \right)}}{2}
The third derivative [src]
    /x\ 
-cos|-| 
    \2/ 
--------
   4    
cos(x2)4- \frac{\cos{\left(\frac{x}{2} \right)}}{4}
The graph
Derivative of 2*sin(x/2)