Mister Exam

Other calculators

Derivative of 2*exp/(2-x)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x  
  2*e   
--------
       2
(2 - x) 
$$\frac{2 e^{x}}{\left(2 - x\right)^{2}}$$
(2*exp(x))/(2 - x)^2
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of is itself.

      So, the result is:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     x                  x
  2*e      2*(4 - 2*x)*e 
-------- + --------------
       2             4   
(2 - x)       (2 - x)    
$$\frac{2 e^{x}}{\left(2 - x\right)^{2}} + \frac{2 \left(4 - 2 x\right) e^{x}}{\left(2 - x\right)^{4}}$$
The second derivative [src]
  /      4          6    \  x
2*|1 - ------ + ---------|*e 
  |    -2 + x           2|   
  \             (-2 + x) /   
-----------------------------
                  2          
          (-2 + x)           
$$\frac{2 \left(1 - \frac{4}{x - 2} + \frac{6}{\left(x - 2\right)^{2}}\right) e^{x}}{\left(x - 2\right)^{2}}$$
The third derivative [src]
  /        24        6          18   \  x
2*|1 - --------- - ------ + ---------|*e 
  |            3   -2 + x           2|   
  \    (-2 + x)             (-2 + x) /   
-----------------------------------------
                        2                
                (-2 + x)                 
$$\frac{2 \left(1 - \frac{6}{x - 2} + \frac{18}{\left(x - 2\right)^{2}} - \frac{24}{\left(x - 2\right)^{3}}\right) e^{x}}{\left(x - 2\right)^{2}}$$