Mister Exam

Other calculators


(2-x)^6(5+2x)^4

Derivative of (2-x)^6(5+2x)^4

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       6          4
(2 - x) *(5 + 2*x) 
$$\left(2 - x\right)^{6} \left(2 x + 5\right)^{4}$$
(2 - x)^6*(5 + 2*x)^4
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
           5          4            6          3
- 6*(2 - x) *(5 + 2*x)  + 8*(2 - x) *(5 + 2*x) 
$$8 \left(2 - x\right)^{6} \left(2 x + 5\right)^{3} - 6 \left(2 - x\right)^{5} \left(2 x + 5\right)^{4}$$
The second derivative [src]
          4          2 /           2             2                        \
6*(-2 + x) *(5 + 2*x) *\5*(5 + 2*x)  + 8*(-2 + x)  + 16*(-2 + x)*(5 + 2*x)/
$$6 \left(x - 2\right)^{4} \left(2 x + 5\right)^{2} \left(8 \left(x - 2\right)^{2} + 16 \left(x - 2\right) \left(2 x + 5\right) + 5 \left(2 x + 5\right)^{2}\right)$$
The third derivative [src]
           3           /           3             3               2                       2          \
24*(-2 + x) *(5 + 2*x)*\5*(5 + 2*x)  + 8*(-2 + x)  + 30*(5 + 2*x) *(-2 + x) + 36*(-2 + x) *(5 + 2*x)/
$$24 \left(x - 2\right)^{3} \left(2 x + 5\right) \left(8 \left(x - 2\right)^{3} + 36 \left(x - 2\right)^{2} \left(2 x + 5\right) + 30 \left(x - 2\right) \left(2 x + 5\right)^{2} + 5 \left(2 x + 5\right)^{3}\right)$$
The graph
Derivative of (2-x)^6(5+2x)^4