Mister Exam

Derivative of (2-x)/log(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
2 - x 
------
log(x)
$$\frac{2 - x}{\log{\left(x \right)}}$$
(2 - x)/log(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. The derivative of is .

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    1        2 - x  
- ------ - ---------
  log(x)        2   
           x*log (x)
$$- \frac{1}{\log{\left(x \right)}} - \frac{2 - x}{x \log{\left(x \right)}^{2}}$$
The second derivative [src]
    /      2   \         
    |1 + ------|*(-2 + x)
    \    log(x)/         
2 - ---------------------
              x          
-------------------------
             2           
        x*log (x)        
$$\frac{2 - \frac{\left(1 + \frac{2}{\log{\left(x \right)}}\right) \left(x - 2\right)}{x}}{x \log{\left(x \right)}^{2}}$$
The third derivative [src]
                         /      3         3   \
              2*(-2 + x)*|1 + ------ + -------|
                         |    log(x)      2   |
       6                 \             log (x)/
-3 - ------ + ---------------------------------
     log(x)                   x                
-----------------------------------------------
                    2    2                     
                   x *log (x)                  
$$\frac{-3 - \frac{6}{\log{\left(x \right)}} + \frac{2 \left(x - 2\right) \left(1 + \frac{3}{\log{\left(x \right)}} + \frac{3}{\log{\left(x \right)}^{2}}\right)}{x}}{x^{2} \log{\left(x \right)}^{2}}$$
The graph
Derivative of (2-x)/log(x)