Mister Exam

Other calculators

Derivative of 2/(ln(4x+25))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      2      
-------------
log(4*x + 25)
$$\frac{2}{\log{\left(4 x + 25 \right)}}$$
2/log(4*x + 25)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of is .

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
           -8            
-------------------------
              2          
(4*x + 25)*log (4*x + 25)
$$- \frac{8}{\left(4 x + 25\right) \log{\left(4 x + 25 \right)}^{2}}$$
The second derivative [src]
     /          2      \  
  32*|1 + -------------|  
     \    log(25 + 4*x)/  
--------------------------
          2    2          
(25 + 4*x) *log (25 + 4*x)
$$\frac{32 \left(1 + \frac{2}{\log{\left(4 x + 25 \right)}}\right)}{\left(4 x + 25\right)^{2} \log{\left(4 x + 25 \right)}^{2}}$$
The third derivative [src]
     /          3               3       \
-256*|1 + ------------- + --------------|
     |    log(25 + 4*x)      2          |
     \                    log (25 + 4*x)/
-----------------------------------------
                  3    2                 
        (25 + 4*x) *log (25 + 4*x)       
$$- \frac{256 \left(1 + \frac{3}{\log{\left(4 x + 25 \right)}} + \frac{3}{\log{\left(4 x + 25 \right)}^{2}}\right)}{\left(4 x + 25\right)^{3} \log{\left(4 x + 25 \right)}^{2}}$$