______________ \/ 2*cos(x) + 1
d / ______________\ --\\/ 2*cos(x) + 1 / dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
-sin(x) ---------------- ______________ \/ 2*cos(x) + 1
/ 2 \ | sin (x) | -|------------ + cos(x)| \1 + 2*cos(x) / ------------------------- ______________ \/ 1 + 2*cos(x)
/ 2 \ | 3*cos(x) 3*sin (x) | |1 - ------------ - ---------------|*sin(x) | 1 + 2*cos(x) 2| \ (1 + 2*cos(x)) / ------------------------------------------- ______________ \/ 1 + 2*cos(x)