Mister Exam

Other calculators


(2cosx+1)^(1/2)

Derivative of (2cosx+1)^(1/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ______________
\/ 2*cos(x) + 1 
$$\sqrt{2 \cos{\left(x \right)} + 1}$$
d /  ______________\
--\\/ 2*cos(x) + 1 /
dx                  
$$\frac{d}{d x} \sqrt{2 \cos{\left(x \right)} + 1}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

        So, the result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    -sin(x)     
----------------
  ______________
\/ 2*cos(x) + 1 
$$- \frac{\sin{\left(x \right)}}{\sqrt{2 \cos{\left(x \right)} + 1}}$$
The second derivative [src]
 /     2               \ 
 |  sin (x)            | 
-|------------ + cos(x)| 
 \1 + 2*cos(x)         / 
-------------------------
       ______________    
     \/ 1 + 2*cos(x)     
$$- \frac{\cos{\left(x \right)} + \frac{\sin^{2}{\left(x \right)}}{2 \cos{\left(x \right)} + 1}}{\sqrt{2 \cos{\left(x \right)} + 1}}$$
The third derivative [src]
/                           2      \       
|      3*cos(x)        3*sin (x)   |       
|1 - ------------ - ---------------|*sin(x)
|    1 + 2*cos(x)                 2|       
\                   (1 + 2*cos(x)) /       
-------------------------------------------
                ______________             
              \/ 1 + 2*cos(x)              
$$\frac{\left(1 - \frac{3 \cos{\left(x \right)}}{2 \cos{\left(x \right)} + 1} - \frac{3 \sin^{2}{\left(x \right)}}{\left(2 \cos{\left(x \right)} + 1\right)^{2}}\right) \sin{\left(x \right)}}{\sqrt{2 \cos{\left(x \right)} + 1}}$$
The graph
Derivative of (2cosx+1)^(1/2)