Mister Exam

Derivative of 2.6sin(0.5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /x\
13*sin|-|
      \2/
---------
    5    
13sin(x2)5\frac{13 \sin{\left(\frac{x}{2} \right)}}{5}
13*sin(x/2)/5
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=x2u = \frac{x}{2}.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 12\frac{1}{2}

      The result of the chain rule is:

      cos(x2)2\frac{\cos{\left(\frac{x}{2} \right)}}{2}

    So, the result is: 13cos(x2)10\frac{13 \cos{\left(\frac{x}{2} \right)}}{10}


The answer is:

13cos(x2)10\frac{13 \cos{\left(\frac{x}{2} \right)}}{10}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
      /x\
13*cos|-|
      \2/
---------
    10   
13cos(x2)10\frac{13 \cos{\left(\frac{x}{2} \right)}}{10}
The second derivative [src]
       /x\
-13*sin|-|
       \2/
----------
    20    
13sin(x2)20- \frac{13 \sin{\left(\frac{x}{2} \right)}}{20}
The third derivative [src]
       /x\
-13*cos|-|
       \2/
----------
    40    
13cos(x2)40- \frac{13 \cos{\left(\frac{x}{2} \right)}}{40}