12*cos(x) ---------- 1 - sin(x)
(12*cos(x))/(1 - sin(x))
Apply the quotient rule, which is:
and .
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
12*sin(x) 12*cos (x)
- ---------- + -------------
1 - sin(x) 2
(1 - sin(x))
/ 2 \
| 2*cos (x) |
| ----------- + sin(x) |
| -1 + sin(x) 2*sin(x) |
12*|1 - -------------------- - -----------|*cos(x)
\ -1 + sin(x) -1 + sin(x)/
--------------------------------------------------
-1 + sin(x)
/ / 2 \ \
| 2 | 6*sin(x) 6*cos (x) | / 2 \ |
| cos (x)*|-1 + ----------- + --------------| | 2*cos (x) | |
| 2 | -1 + sin(x) 2| 3*|----------- + sin(x)|*sin(x)|
| 3*cos (x) \ (-1 + sin(x)) / \-1 + sin(x) / |
12*|-sin(x) - ----------- + ------------------------------------------- + -------------------------------|
\ -1 + sin(x) -1 + sin(x) -1 + sin(x) /
----------------------------------------------------------------------------------------------------------
-1 + sin(x)