Mister Exam

Other calculators

Derivative of 12*cosx/(1-sinx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
12*cos(x) 
----------
1 - sin(x)
$$\frac{12 \cos{\left(x \right)}}{1 - \sin{\left(x \right)}}$$
(12*cos(x))/(1 - sin(x))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of cosine is negative sine:

      So, the result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of sine is cosine:

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                       2    
  12*sin(x)      12*cos (x) 
- ---------- + -------------
  1 - sin(x)               2
               (1 - sin(x)) 
$$- \frac{12 \sin{\left(x \right)}}{1 - \sin{\left(x \right)}} + \frac{12 \cos^{2}{\left(x \right)}}{\left(1 - \sin{\left(x \right)}\right)^{2}}$$
The second derivative [src]
   /          2                           \       
   |     2*cos (x)                        |       
   |    ----------- + sin(x)              |       
   |    -1 + sin(x)              2*sin(x) |       
12*|1 - -------------------- - -----------|*cos(x)
   \        -1 + sin(x)        -1 + sin(x)/       
--------------------------------------------------
                   -1 + sin(x)                    
$$\frac{12 \left(1 - \frac{\sin{\left(x \right)} + \frac{2 \cos^{2}{\left(x \right)}}{\sin{\left(x \right)} - 1}}{\sin{\left(x \right)} - 1} - \frac{2 \sin{\left(x \right)}}{\sin{\left(x \right)} - 1}\right) \cos{\left(x \right)}}{\sin{\left(x \right)} - 1}$$
The third derivative [src]
   /                                /                          2      \                                  \
   |                           2    |       6*sin(x)      6*cos (x)   |     /      2             \       |
   |                        cos (x)*|-1 + ----------- + --------------|     | 2*cos (x)          |       |
   |                2               |     -1 + sin(x)                2|   3*|----------- + sin(x)|*sin(x)|
   |           3*cos (x)            \                   (-1 + sin(x)) /     \-1 + sin(x)         /       |
12*|-sin(x) - ----------- + ------------------------------------------- + -------------------------------|
   \          -1 + sin(x)                   -1 + sin(x)                             -1 + sin(x)          /
----------------------------------------------------------------------------------------------------------
                                               -1 + sin(x)                                                
$$\frac{12 \left(- \sin{\left(x \right)} + \frac{3 \left(\sin{\left(x \right)} + \frac{2 \cos^{2}{\left(x \right)}}{\sin{\left(x \right)} - 1}\right) \sin{\left(x \right)}}{\sin{\left(x \right)} - 1} + \frac{\left(-1 + \frac{6 \sin{\left(x \right)}}{\sin{\left(x \right)} - 1} + \frac{6 \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} - 1\right)^{2}}\right) \cos^{2}{\left(x \right)}}{\sin{\left(x \right)} - 1} - \frac{3 \cos^{2}{\left(x \right)}}{\sin{\left(x \right)} - 1}\right)}{\sin{\left(x \right)} - 1}$$