The second derivative
[src]
/ 2 \
|-1 + tanh (x) tanh(x) / 2 \ |
2*|------------- + ------- + \-1 + tanh (x)/*tanh(x)|
| x 2 |
\ x /
-----------------------------------------------------
x
$$\frac{2 \left(\left(\tanh^{2}{\left(x \right)} - 1\right) \tanh{\left(x \right)} + \frac{\tanh^{2}{\left(x \right)} - 1}{x} + \frac{\tanh{\left(x \right)}}{x^{2}}\right)}{x}$$
The third derivative
[src]
/ / 2 \ / 2 \ \
|/ 2 \ / 2 \ 3*tanh(x) 3*\-1 + tanh (x)/ 3*\-1 + tanh (x)/*tanh(x)|
-2*|\-1 + tanh (x)/*\-1 + 3*tanh (x)/ + --------- + ----------------- + -------------------------|
| 3 2 x |
\ x x /
--------------------------------------------------------------------------------------------------
x
$$- \frac{2 \left(\left(\tanh^{2}{\left(x \right)} - 1\right) \left(3 \tanh^{2}{\left(x \right)} - 1\right) + \frac{3 \left(\tanh^{2}{\left(x \right)} - 1\right) \tanh{\left(x \right)}}{x} + \frac{3 \left(\tanh^{2}{\left(x \right)} - 1\right)}{x^{2}} + \frac{3 \tanh{\left(x \right)}}{x^{3}}\right)}{x}$$