Mister Exam

Derivative of thx/x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tanh(x)
-------
   x   
$$\frac{\tanh{\left(x \right)}}{x}$$
tanh(x)/x
The graph
The first derivative [src]
        2             
1 - tanh (x)   tanh(x)
------------ - -------
     x             2  
                  x   
$$\frac{1 - \tanh^{2}{\left(x \right)}}{x} - \frac{\tanh{\left(x \right)}}{x^{2}}$$
The second derivative [src]
  /         2                                       \
  |-1 + tanh (x)   tanh(x)   /         2   \        |
2*|------------- + ------- + \-1 + tanh (x)/*tanh(x)|
  |      x             2                            |
  \                   x                             /
-----------------------------------------------------
                          x                          
$$\frac{2 \left(\left(\tanh^{2}{\left(x \right)} - 1\right) \tanh{\left(x \right)} + \frac{\tanh^{2}{\left(x \right)} - 1}{x} + \frac{\tanh{\left(x \right)}}{x^{2}}\right)}{x}$$
The third derivative [src]
   /                                                  /         2   \     /         2   \        \
   |/         2   \ /           2   \   3*tanh(x)   3*\-1 + tanh (x)/   3*\-1 + tanh (x)/*tanh(x)|
-2*|\-1 + tanh (x)/*\-1 + 3*tanh (x)/ + --------- + ----------------- + -------------------------|
   |                                         3               2                      x            |
   \                                        x               x                                    /
--------------------------------------------------------------------------------------------------
                                                x                                                 
$$- \frac{2 \left(\left(\tanh^{2}{\left(x \right)} - 1\right) \left(3 \tanh^{2}{\left(x \right)} - 1\right) + \frac{3 \left(\tanh^{2}{\left(x \right)} - 1\right) \tanh{\left(x \right)}}{x} + \frac{3 \left(\tanh^{2}{\left(x \right)} - 1\right)}{x^{2}} + \frac{3 \tanh{\left(x \right)}}{x^{3}}\right)}{x}$$