Mister Exam

Other calculators

Derivative of 3^(x)*(log(x))/(log3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x       
3 *log(x)
---------
  log(3) 
3xlog(x)log(3)\frac{3^{x} \log{\left(x \right)}}{\log{\left(3 \right)}}
(3^x*log(x))/log(3)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=3xf{\left(x \right)} = 3^{x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. ddx3x=3xlog(3)\frac{d}{d x} 3^{x} = 3^{x} \log{\left(3 \right)}

      g(x)=log(x)g{\left(x \right)} = \log{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

      The result is: 3xlog(3)log(x)+3xx3^{x} \log{\left(3 \right)} \log{\left(x \right)} + \frac{3^{x}}{x}

    So, the result is: 3xlog(3)log(x)+3xxlog(3)\frac{3^{x} \log{\left(3 \right)} \log{\left(x \right)} + \frac{3^{x}}{x}}{\log{\left(3 \right)}}

  2. Now simplify:

    3xlog(x)+3xxlog(3)3^{x} \log{\left(x \right)} + \frac{3^{x}}{x \log{\left(3 \right)}}


The answer is:

3xlog(x)+3xxlog(3)3^{x} \log{\left(x \right)} + \frac{3^{x}}{x \log{\left(3 \right)}}

The graph
02468-8-6-4-2-1010-200000200000
The first derivative [src]
 x                   
3     x              
-- + 3 *log(3)*log(x)
x                    
---------------------
        log(3)       
3xlog(3)log(x)+3xxlog(3)\frac{3^{x} \log{\left(3 \right)} \log{\left(x \right)} + \frac{3^{x}}{x}}{\log{\left(3 \right)}}
The second derivative [src]
 x /  1       2             2*log(3)\
3 *|- -- + log (3)*log(x) + --------|
   |   2                       x    |
   \  x                             /
-------------------------------------
                log(3)               
3x(log(3)2log(x)+2log(3)x1x2)log(3)\frac{3^{x} \left(\log{\left(3 \right)}^{2} \log{\left(x \right)} + \frac{2 \log{\left(3 \right)}}{x} - \frac{1}{x^{2}}\right)}{\log{\left(3 \right)}}
The third derivative [src]
   /                                      2   \
 x |2       3             3*log(3)   3*log (3)|
3 *|-- + log (3)*log(x) - -------- + ---------|
   | 3                        2          x    |
   \x                        x                /
-----------------------------------------------
                     log(3)                    
3x(log(3)3log(x)+3log(3)2x3log(3)x2+2x3)log(3)\frac{3^{x} \left(\log{\left(3 \right)}^{3} \log{\left(x \right)} + \frac{3 \log{\left(3 \right)}^{2}}{x} - \frac{3 \log{\left(3 \right)}}{x^{2}} + \frac{2}{x^{3}}\right)}{\log{\left(3 \right)}}