Mister Exam

Other calculators

Derivative of 3^(sin2x)-1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(2*x)    
3         - 1
$$3^{\sin{\left(2 x \right)}} - 1$$
3^sin(2*x) - 1
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    3. The derivative of the constant is zero.

    The result is:


The answer is:

The graph
The first derivative [src]
   sin(2*x)                
2*3        *cos(2*x)*log(3)
$$2 \cdot 3^{\sin{\left(2 x \right)}} \log{\left(3 \right)} \cos{\left(2 x \right)}$$
The second derivative [src]
   sin(2*x) /               2            \       
4*3        *\-sin(2*x) + cos (2*x)*log(3)/*log(3)
$$4 \cdot 3^{\sin{\left(2 x \right)}} \left(- \sin{\left(2 x \right)} + \log{\left(3 \right)} \cos^{2}{\left(2 x \right)}\right) \log{\left(3 \right)}$$
The third derivative [src]
   sin(2*x) /        2         2                       \                
8*3        *\-1 + cos (2*x)*log (3) - 3*log(3)*sin(2*x)/*cos(2*x)*log(3)
$$8 \cdot 3^{\sin{\left(2 x \right)}} \left(- 3 \log{\left(3 \right)} \sin{\left(2 x \right)} + \log{\left(3 \right)}^{2} \cos^{2}{\left(2 x \right)} - 1\right) \log{\left(3 \right)} \cos{\left(2 x \right)}$$