1 ---------- log(x + 1) 3
3^(1/log(x + 1))
Let .
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
1
----------
log(x + 1)
-3 *log(3)
--------------------
2
(x + 1)*log (x + 1)
1
----------
log(1 + x) / 2 log(3) \
3 *|1 + ---------- + -----------|*log(3)
| log(1 + x) 2 |
\ log (1 + x)/
-------------------------------------------------
2 2
(1 + x) *log (1 + x)
1
---------- / 2 \
log(1 + x) | 6 6 log (3) 3*log(3) 6*log(3) |
-3 *|2 + ---------- + ----------- + ----------- + ----------- + -----------|*log(3)
| log(1 + x) 2 4 2 3 |
\ log (1 + x) log (1 + x) log (1 + x) log (1 + x)/
---------------------------------------------------------------------------------------------
3 2
(1 + x) *log (1 + x)