Mister Exam

Other calculators

Derivative of 3^atan(2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 atan(2*x)
3         
$$3^{\operatorname{atan}{\left(2 x \right)}}$$
3^atan(2*x)
The graph
The first derivative [src]
   atan(2*x)       
2*3         *log(3)
-------------------
             2     
      1 + 4*x      
$$\frac{2 \cdot 3^{\operatorname{atan}{\left(2 x \right)}} \log{\left(3 \right)}}{4 x^{2} + 1}$$
The second derivative [src]
   atan(2*x)                       
4*3         *(-4*x + log(3))*log(3)
-----------------------------------
                      2            
            /       2\             
            \1 + 4*x /             
$$\frac{4 \cdot 3^{\operatorname{atan}{\left(2 x \right)}} \left(- 4 x + \log{\left(3 \right)}\right) \log{\left(3 \right)}}{\left(4 x^{2} + 1\right)^{2}}$$
The third derivative [src]
             /        2            2                \       
   atan(2*x) |     log (3)     32*x      12*x*log(3)|       
8*3         *|-2 + -------- + -------- - -----------|*log(3)
             |            2          2            2 |       
             \     1 + 4*x    1 + 4*x      1 + 4*x  /       
------------------------------------------------------------
                                  2                         
                        /       2\                          
                        \1 + 4*x /                          
$$\frac{8 \cdot 3^{\operatorname{atan}{\left(2 x \right)}} \left(\frac{32 x^{2}}{4 x^{2} + 1} - \frac{12 x \log{\left(3 \right)}}{4 x^{2} + 1} - 2 + \frac{\log{\left(3 \right)}^{2}}{4 x^{2} + 1}\right) \log{\left(3 \right)}}{\left(4 x^{2} + 1\right)^{2}}$$