Mister Exam

Other calculators


3*sqrt(e^(4x+3))

Derivative of 3*sqrt(e^(4x+3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     __________
    /  4*x + 3 
3*\/  e        
3e4x+33 \sqrt{e^{4 x + 3}}
  /     __________\
d |    /  4*x + 3 |
--\3*\/  e        /
dx                 
ddx3e4x+3\frac{d}{d x} 3 \sqrt{e^{4 x + 3}}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=e4x+3u = e^{4 x + 3}.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddxe4x+3\frac{d}{d x} e^{4 x + 3}:

      1. Let u=4x+3u = 4 x + 3.

      2. The derivative of eue^{u} is itself.

      3. Then, apply the chain rule. Multiply by ddx(4x+3)\frac{d}{d x} \left(4 x + 3\right):

        1. Differentiate 4x+34 x + 3 term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          2. The derivative of the constant 33 is zero.

          The result is: 44

        The result of the chain rule is:

        4e4x+34 e^{4 x + 3}

      The result of the chain rule is:

      2e2x32e4x+32 e^{- 2 x - \frac{3}{2}} e^{4 x + 3}

    So, the result is: 6e2x32e4x+36 e^{- 2 x - \frac{3}{2}} e^{4 x + 3}

  2. Now simplify:

    6e2x+326 e^{2 x + \frac{3}{2}}


The answer is:

6e2x+326 e^{2 x + \frac{3}{2}}

The graph
02468-8-6-4-2-1010020000000000
The first derivative [src]
   -3 - 4*x  3/2 + 2*x  4*x + 3
6*e        *e         *e       
6e4x3e2x+32e4x+36 e^{- 4 x - 3} e^{2 x + \frac{3}{2}} e^{4 x + 3}
The second derivative [src]
    3/2 + 2*x
12*e         
12e2x+3212 e^{2 x + \frac{3}{2}}
The third derivative [src]
    3/2 + 2*x
24*e         
24e2x+3224 e^{2 x + \frac{3}{2}}
The graph
Derivative of 3*sqrt(e^(4x+3))